文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于加权交互网络的 miRNA 和疾病关联预测新方法。

A Novel Approach Based on a Weighted Interactive Network to Predict Associations of MiRNAs and Diseases.

机构信息

Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan 411105, China.

College of Computer Engineering & Applied Mathematics, Changsha University, Changsha 410001, China.

出版信息

Int J Mol Sci. 2018 Dec 28;20(1):110. doi: 10.3390/ijms20010110.


DOI:10.3390/ijms20010110
PMID:30597923
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6337518/
Abstract

Accumulating evidence progressively indicated that microRNAs (miRNAs) play a significant role in the pathogenesis of diseases through many experimental studies; therefore, developing powerful computational models to identify potential human miRNA⁻disease associations is vital for an understanding of the disease etiology and pathogenesis. In this paper, a weighted interactive network was firstly constructed by combining known miRNA⁻disease associations, as well as the integrated similarity between diseases and the integrated similarity between miRNAs. Then, a new computational method implementing the newly weighted interactive network was developed for discovering potential miRNA⁻disease associations (WINMDA) by integrating the most similar neighbors and the shortest path algorithm. Simulation results show that WINMDA can achieve reliable area under the receiver operating characteristics (ROC) curve (AUC) results of 0.9183 ± 0.0007 in 5-fold cross-validation, 0.9200 ± 0.0004 in 10-fold cross-validation, 0.9243 in global leave-one-out cross-validation (LOOCV), and 0.8856 in local LOOCV. Furthermore, case studies of colon neoplasms, gastric neoplasms, and prostate neoplasms based on the Human microRNA Disease Database (HMDD) database were implemented, for which 94% (colon neoplasms), 96% (gastric neoplasms), and 96% (prostate neoplasms) of the top 50 predicting miRNAs were confirmed by recent experimental reports, which also demonstrates that WINMDA can effectively uncover potential miRNA⁻disease associations.

摘要

越来越多的证据表明,通过许多实验研究,microRNAs(miRNAs)在疾病的发病机制中起着重要作用;因此,开发强大的计算模型来识别潜在的人类 miRNA⁻disease 关联对于理解疾病的病因和发病机制至关重要。在本文中,首先通过结合已知的 miRNA⁻disease 关联,以及疾病之间的综合相似性和 miRNA 之间的综合相似性,构建了一个加权交互网络。然后,开发了一种新的计算方法,通过整合最相似的邻居和最短路径算法,实现了基于加权交互网络的新计算方法(WINMDA),用于发现潜在的 miRNA⁻disease 关联。模拟结果表明,WINMDA 在 5 折交叉验证中可以达到可靠的接收者操作特征(ROC)曲线下面积(AUC)结果 0.9183±0.0007,在 10 折交叉验证中为 0.9200±0.0004,在全局留一法交叉验证(LOOCV)中为 0.9243,在局部 LOOCV 中为 0.8856。此外,还基于 Human microRNA Disease Database(HMDD)数据库对结肠癌、胃癌和前列腺癌进行了案例研究,其中前 50 个预测 miRNA 中有 94%(结肠癌)、96%(胃癌)和 96%(前列腺癌)被最近的实验报告所证实,这也证明了 WINMDA 可以有效地发现潜在的 miRNA⁻disease 关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c62a/6337518/fa627ef62ad1/ijms-20-00110-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c62a/6337518/9f6b2167e441/ijms-20-00110-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c62a/6337518/b5a822cd53b6/ijms-20-00110-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c62a/6337518/8896554d101f/ijms-20-00110-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c62a/6337518/78062572d342/ijms-20-00110-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c62a/6337518/fa627ef62ad1/ijms-20-00110-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c62a/6337518/9f6b2167e441/ijms-20-00110-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c62a/6337518/b5a822cd53b6/ijms-20-00110-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c62a/6337518/8896554d101f/ijms-20-00110-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c62a/6337518/78062572d342/ijms-20-00110-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c62a/6337518/fa627ef62ad1/ijms-20-00110-g005.jpg

相似文献

[1]
A Novel Approach Based on a Weighted Interactive Network to Predict Associations of MiRNAs and Diseases.

Int J Mol Sci. 2018-12-28

[2]
An improved random forest-based computational model for predicting novel miRNA-disease associations.

BMC Bioinformatics. 2019-12-3

[3]
WBNPMD: weighted bipartite network projection for microRNA-disease association prediction.

J Transl Med. 2019-9-23

[4]
NDAMDA: Network distance analysis for MiRNA-disease association prediction.

J Cell Mol Med. 2018-3-13

[5]
MCMDA: Matrix completion for MiRNA-disease association prediction.

Oncotarget. 2017-3-28

[6]
MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.

PLoS Comput Biol. 2018-8-24

[7]
Improved Prediction of miRNA-Disease Associations Based on Matrix Completion with Network Regularization.

Cells. 2020-4-3

[8]
A novel method for identifying potential disease-related miRNAs via a disease-miRNA-target heterogeneous network.

Mol Biosyst. 2017-10-24

[9]
In silico prediction of potential miRNA-disease association using an integrative bioinformatics approach based on kernel fusion.

J Cell Mol Med. 2020-1

[10]
An integrated framework for the identification of potential miRNA-disease association based on novel negative samples extraction strategy.

RNA Biol. 2019-1-28

引用本文的文献

[1]
Unraveling the Endocannabinoid System: Exploring Its Therapeutic Potential in Autism Spectrum Disorder.

Neuromolecular Med. 2024-5-14

[2]
A Neuroanatomic and Pathophysiologic Framework for Novel Pharmacological Approaches to the Treatment of Post-traumatic Stress Disorder.

Drugs. 2024-2

[3]
KATZNCP: a miRNA-disease association prediction model integrating KATZ algorithm and network consistency projection.

BMC Bioinformatics. 2023-6-2

[4]
Major-effect quantitative trait locus qLKR4.1 encodes a phospholipase Dδ protein associated with low-K stress tolerance by promoting root length.

Theor Appl Genet. 2023-3-27

[5]
The current landscape of microRNAs (miRNAs) in bacterial pneumonia: opportunities and challenges.

Cell Mol Biol Lett. 2022-8-19

[6]
The Role of Cannabinoids in CNS Development: Focus on Proliferation and Cell Death.

Cell Mol Neurobiol. 2023-5

[7]
TLNPMD: Prediction of miRNA-Disease Associations Based on miRNA-Drug-Disease Three-Layer Heterogeneous Network.

Molecules. 2022-7-7

[8]
Weight loss outcomes are not compromised in bariatric patients using cannabis.

Surg Endosc. 2023-3

[9]
Network Approaches for Charting the Transcriptomic and Epigenetic Landscape of the Developmental Origins of Health and Disease.

Genes (Basel). 2022-4-26

[10]
MSCHLMDA: Multi-Similarity Based Combinative Hypergraph Learning for Predicting MiRNA-Disease Association.

Front Genet. 2020-4-15

本文引用的文献

[1]
A heterogeneous label propagation approach to explore the potential associations between miRNA and disease.

J Transl Med. 2018-12-11

[2]
Novel Human miRNA-Disease Association Inference Based on Random Forest.

Mol Ther Nucleic Acids. 2018-12-7

[3]
Predicting microRNA-disease associations using bipartite local models and hubness-aware regression.

RNA Biol. 2018-9-19

[4]
MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.

PLoS Comput Biol. 2018-8-24

[5]
A Novel Method for LncRNA-Disease Association Prediction Based on an lncRNA-Disease Association Network.

IEEE/ACM Trans Comput Biol Bioinform. 2018-4-16

[6]
A Novel Probability Model for LncRNA⁻Disease Association Prediction Based on the Naïve Bayesian Classifier.

Genes (Basel). 2018-7-8

[7]
Predicting miRNA-disease association based on inductive matrix completion.

Bioinformatics. 2018-12-15

[8]
BNPMDA: Bipartite Network Projection for MiRNA-Disease Association prediction.

Bioinformatics. 2018-9-15

[9]
Prediction of microRNA-disease associations based on distance correlation set.

BMC Bioinformatics. 2018-4-17

[10]
ELLPMDA: Ensemble learning and link prediction for miRNA-disease association prediction.

RNA Biol. 2018-5-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索