Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan 411105, China.
College of Computer Engineering & Applied Mathematics, Changsha University, Changsha 410001, China.
Int J Mol Sci. 2018 Dec 28;20(1):110. doi: 10.3390/ijms20010110.
Accumulating evidence progressively indicated that microRNAs (miRNAs) play a significant role in the pathogenesis of diseases through many experimental studies; therefore, developing powerful computational models to identify potential human miRNA⁻disease associations is vital for an understanding of the disease etiology and pathogenesis. In this paper, a weighted interactive network was firstly constructed by combining known miRNA⁻disease associations, as well as the integrated similarity between diseases and the integrated similarity between miRNAs. Then, a new computational method implementing the newly weighted interactive network was developed for discovering potential miRNA⁻disease associations (WINMDA) by integrating the most similar neighbors and the shortest path algorithm. Simulation results show that WINMDA can achieve reliable area under the receiver operating characteristics (ROC) curve (AUC) results of 0.9183 ± 0.0007 in 5-fold cross-validation, 0.9200 ± 0.0004 in 10-fold cross-validation, 0.9243 in global leave-one-out cross-validation (LOOCV), and 0.8856 in local LOOCV. Furthermore, case studies of colon neoplasms, gastric neoplasms, and prostate neoplasms based on the Human microRNA Disease Database (HMDD) database were implemented, for which 94% (colon neoplasms), 96% (gastric neoplasms), and 96% (prostate neoplasms) of the top 50 predicting miRNAs were confirmed by recent experimental reports, which also demonstrates that WINMDA can effectively uncover potential miRNA⁻disease associations.
越来越多的证据表明,通过许多实验研究,microRNAs(miRNAs)在疾病的发病机制中起着重要作用;因此,开发强大的计算模型来识别潜在的人类 miRNA⁻disease 关联对于理解疾病的病因和发病机制至关重要。在本文中,首先通过结合已知的 miRNA⁻disease 关联,以及疾病之间的综合相似性和 miRNA 之间的综合相似性,构建了一个加权交互网络。然后,开发了一种新的计算方法,通过整合最相似的邻居和最短路径算法,实现了基于加权交互网络的新计算方法(WINMDA),用于发现潜在的 miRNA⁻disease 关联。模拟结果表明,WINMDA 在 5 折交叉验证中可以达到可靠的接收者操作特征(ROC)曲线下面积(AUC)结果 0.9183±0.0007,在 10 折交叉验证中为 0.9200±0.0004,在全局留一法交叉验证(LOOCV)中为 0.9243,在局部 LOOCV 中为 0.8856。此外,还基于 Human microRNA Disease Database(HMDD)数据库对结肠癌、胃癌和前列腺癌进行了案例研究,其中前 50 个预测 miRNA 中有 94%(结肠癌)、96%(胃癌)和 96%(前列腺癌)被最近的实验报告所证实,这也证明了 WINMDA 可以有效地发现潜在的 miRNA⁻disease 关联。
BMC Bioinformatics. 2019-12-3
J Transl Med. 2019-9-23
J Cell Mol Med. 2018-3-13
Oncotarget. 2017-3-28
PLoS Comput Biol. 2018-8-24
Neuromolecular Med. 2024-5-14
Cell Mol Biol Lett. 2022-8-19
Cell Mol Neurobiol. 2023-5
Mol Ther Nucleic Acids. 2018-12-7
PLoS Comput Biol. 2018-8-24
IEEE/ACM Trans Comput Biol Bioinform. 2018-4-16
Bioinformatics. 2018-12-15
Bioinformatics. 2018-9-15
BMC Bioinformatics. 2018-4-17