NDAMDA:用于 miRNA-疾病关联预测的网络距离分析。

NDAMDA: Network distance analysis for MiRNA-disease association prediction.

机构信息

School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China.

School of Mathematics and Statistics, Wuhan University, Luojiashan, Wuchang, China.

出版信息

J Cell Mol Med. 2018 May;22(5):2884-2895. doi: 10.1111/jcmm.13583. Epub 2018 Mar 13.

Abstract

In recent years, microRNAs (miRNAs) are attracting an increasing amount of researchers' attention, as accumulating studies show that miRNAs play important roles in various basic biological processes and that dysregulation of miRNAs is connected with diverse human diseases, particularly cancers. However, the experimental methods to identify associations between miRNAs and diseases remain costly and laborious. In this study, we developed a computational method named Network Distance Analysis for MiRNA-Disease Association prediction (NDAMDA) which could effectively predict potential miRNA-disease associations. The highlight of this method was the use of not only the direct network distance between 2 miRNAs (diseases) but also their respective mean network distances to all other miRNAs (diseases) in the network. The model's reliable performance was certified by the AUC of 0.8920 in global leave-one-out cross-validation (LOOCV), 0.8062 in local LOOCV and the average AUCs of 0.8935 ± 0.0009 in fivefold cross-validation. Moreover, we applied NDAMDA to 3 different case studies to predict potential miRNAs related to breast neoplasms, lymphoma, oesophageal neoplasms, prostate neoplasms and hepatocellular carcinoma. Results showed that 86%, 72%, 86%, 86% and 84% of the top 50 predicted miRNAs were supported by experimental association evidence. Therefore, NDAMDA is a reliable method for predicting disease-related miRNAs.

摘要

近年来,microRNAs(miRNAs)引起了越来越多研究人员的关注,越来越多的研究表明 miRNAs 在各种基本生物过程中发挥着重要作用,miRNAs 的失调与多种人类疾病,特别是癌症有关。然而,识别 miRNAs 与疾病之间关联的实验方法仍然昂贵且费力。在这项研究中,我们开发了一种名为 Network Distance Analysis for MiRNA-Disease Association prediction(NDAMDA)的计算方法,该方法可以有效地预测潜在的 miRNA-疾病关联。该方法的一个亮点是不仅使用了 2 个 miRNAs(疾病)之间的直接网络距离,还使用了它们在网络中各自与所有其他 miRNAs(疾病)的平均网络距离。该模型的可靠性能通过全局留一交叉验证(LOOCV)的 AUC 为 0.8920、局部 LOOCV 的 AUC 为 0.8062 以及五次交叉验证的平均 AUC 为 0.8935 ± 0.0009 得到了证明。此外,我们将 NDAMDA 应用于 3 个不同的案例研究,以预测与乳腺癌、淋巴瘤、食管癌、前列腺癌和肝细胞癌相关的潜在 miRNAs。结果表明,前 50 个预测 miRNAs 中有 86%、72%、86%、86%和 84%得到了实验关联证据的支持。因此,NDAMDA 是一种可靠的预测疾病相关 miRNAs 的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f52/5908143/88062ce35790/JCMM-22-2884-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索