Suppr超能文献

KATZNCP:一种整合 KATZ 算法和网络一致性投影的 miRNA-疾病关联预测模型。

KATZNCP: a miRNA-disease association prediction model integrating KATZ algorithm and network consistency projection.

机构信息

School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421002, China.

出版信息

BMC Bioinformatics. 2023 Jun 2;24(1):229. doi: 10.1186/s12859-023-05365-2.

Abstract

BACKGROUND

Clinical studies have shown that miRNAs are closely related to human health. The study of potential associations between miRNAs and diseases will contribute to a profound understanding of the mechanism of disease development, as well as human disease prevention and treatment. MiRNA-disease associations predicted by computational methods are the best complement to biological experiments.

RESULTS

In this research, a federated computational model KATZNCP was proposed on the basis of the KATZ algorithm and network consistency projection to infer the potential miRNA-disease associations. In KATZNCP, a heterogeneous network was initially constructed by integrating the known miRNA-disease association, integrated miRNA similarities, and integrated disease similarities; then, the KATZ algorithm was implemented in the heterogeneous network to obtain the estimated miRNA-disease prediction scores. Finally, the precise scores were obtained by the network consistency projection method as the final prediction results. KATZNCP achieved the reliable predictive performance in leave-one-out cross-validation (LOOCV) with an AUC value of 0.9325, which was better than the state-of-the-art comparable algorithms. Furthermore, case studies of lung neoplasms and esophageal neoplasms demonstrated the excellent predictive performance of KATZNCP.

CONCLUSION

A new computational model KATZNCP was proposed for predicting potential miRNA-drug associations based on KATZ and network consistency projections, which can effectively predict the potential miRNA-disease interactions. Therefore, KATZNCP can be used to provide guidance for future experiments.

摘要

背景

临床研究表明,miRNAs 与人类健康密切相关。研究 miRNA 与疾病之间的潜在关联将有助于深入了解疾病发展的机制,以及人类疾病的预防和治疗。计算方法预测的 miRNA-疾病关联是对生物实验的最佳补充。

结果

在这项研究中,提出了一种基于 KATZ 算法和网络一致性投影的联邦计算模型 KATZNCP,用于推断潜在的 miRNA-疾病关联。在 KATZNCP 中,通过整合已知的 miRNA-疾病关联、整合 miRNA 相似性和整合疾病相似性,最初构建了一个异构网络;然后,在异构网络中实施 KATZ 算法,获得估计的 miRNA-疾病预测评分。最后,通过网络一致性投影方法获得精确的分数作为最终预测结果。KATZNCP 在留一交叉验证(LOOCV)中实现了可靠的预测性能,AUC 值为 0.9325,优于最先进的可比算法。此外,肺肿瘤和食管肿瘤的案例研究表明 KATZNCP 具有出色的预测性能。

结论

提出了一种新的基于 KATZ 和网络一致性投影的计算模型 KATZNCP,用于预测潜在的 miRNA-药物关联,可有效预测潜在的 miRNA-疾病相互作用。因此,KATZNCP 可用于为未来的实验提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4863/10239144/1bbd099cf782/12859_2023_5365_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验