Suppr超能文献

Kagome晶格上的声学高阶拓扑绝缘体

Acoustic higher-order topological insulator on a kagome lattice.

作者信息

Xue Haoran, Yang Yahui, Gao Fei, Chong Yidong, Zhang Baile

机构信息

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.

State Key Laboratory of Modern Optical Instrumentation, and College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China.

出版信息

Nat Mater. 2019 Feb;18(2):108-112. doi: 10.1038/s41563-018-0251-x. Epub 2018 Dec 31.

Abstract

Higher-order topological insulators are a family of recently predicted topological phases of matter that obey an extended topological bulk-boundary correspondence principle. For example, a two-dimensional (2D) second-order topological insulator does not exhibit gapless one-dimensional (1D) topological edge states, like a standard 2D topological insulator, but instead has topologically protected zero-dimensional (0D) corner states. The first prediction of a second-order topological insulator, based on quantized quadrupole polarization, was demonstrated in classical mechanical and electromagnetic metamaterials. Here we experimentally realize a second-order topological insulator in an acoustic metamaterial, based on a 'breathing' kagome lattice that has zero quadrupole polarization but a non-trivial bulk topology characterized by quantized Wannier centres. Unlike previous higher-order topological insulator realizations, the corner states depend not only on the bulk topology but also on the corner shape; we show experimentally that they exist at acute-angled corners of the kagome lattice, but not at obtuse-angled corners. This shape dependence allows corner states to act as topologically protected but reconfigurable local resonances.

摘要

高阶拓扑绝缘体是最近预测的一类物质拓扑相,它们遵循扩展的拓扑体-边界对应原理。例如,二维二阶拓扑绝缘体不像标准二维拓扑绝缘体那样具有无隙一维拓扑边缘态,而是具有拓扑保护的零维角态。基于量子化四极极化对二阶拓扑绝缘体的首次预测,已在经典力学和电磁超材料中得到证实。在此,我们基于具有零四极极化但具有由量子化万尼尔中心表征的非平凡体拓扑的“呼吸” kagome晶格,在声学超材料中通过实验实现了二阶拓扑绝缘体。与之前的高阶拓扑绝缘体实现不同,角态不仅取决于体拓扑,还取决于角的形状;我们通过实验表明,它们存在于kagome晶格的锐角处,而不存在于钝角处。这种形状依赖性使角态能够充当拓扑保护但可重构的局部共振。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验