ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , 3010 Victoria , Australia.
Physical Chemistry I , University of Bayreuth , Universitätsstraβe 30 , 95447 Bayreuth , Germany.
ACS Appl Mater Interfaces. 2019 Jan 16;11(2):2459-2469. doi: 10.1021/acsami.8b14307. Epub 2019 Jan 2.
In biological fluids, proteins bind to particles, forming so-called protein coronas. Such adsorbed protein layers significantly influence the biological interactions of particles, both in vitro and in vivo. The adsorbed protein layer is generally described as a two-component system comprising "hard" and "soft" protein coronas. However, a comprehensive picture regarding the protein corona structure is lacking. Herein, we introduce an experimental approach that allows for in situ monitoring of protein adsorption onto silica microparticles. The technique, which mimics flow in vascularized tumors, combines confocal laser scanning microscopy with microfluidics and allows the study of the time-evolution of protein corona formation. Our results show that protein corona formation is kinetically divided into three different phases: phase 1, proteins irreversibly and directly bound (under physiologically relevant conditions) to the particle surface; phase 2, irreversibly bound proteins interacting with preadsorbed proteins, and phase 3, reversibly bound "soft" protein corona proteins. Additionally, we investigate particle-protein interactions on low-fouling zwitterionic-coated particles where the adsorption of irreversibly bound proteins does not occur, and on such particles, only a "soft" protein corona is formed. The reported approach offers the potential to define new state-of-the art procedures for kinetics and protein fouling experiments.
在生物流体中,蛋白质会与颗粒结合,形成所谓的蛋白质冠。这种吸附的蛋白质层会显著影响颗粒的生物相互作用,无论是在体外还是体内。通常,吸附的蛋白质层被描述为由“硬”和“软”蛋白质冠组成的两相体系。然而,对于蛋白质冠结构还缺乏全面的了解。在这里,我们介绍了一种可以原位监测硅胶颗粒上蛋白质吸附的实验方法。该技术模拟了血管化肿瘤中的流动,将共聚焦激光扫描显微镜与微流控技术相结合,能够研究蛋白质冠形成的时间演变。我们的结果表明,蛋白质冠的形成在动力学上可以分为三个不同的阶段:第 1 阶段,蛋白质不可逆地直接结合(在生理相关条件下)到颗粒表面;第 2 阶段,不可逆结合的蛋白质与预吸附的蛋白质相互作用;第 3 阶段,可逆结合的“软”蛋白质冠蛋白质。此外,我们还研究了在低污染的两性离子涂层颗粒上的颗粒-蛋白质相互作用,在这些颗粒上,不会发生不可逆结合的蛋白质的吸附,并且只形成“软”蛋白质冠。所报道的方法有可能为动力学和蛋白质污染实验定义新的最新程序。