1 Department of Radiology, Istanbul Training and Research Hospital, Istanbul, Turkey.
2 Department of Radiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.
AJR Am J Roentgenol. 2019 Mar;212(3):W55-W63. doi: 10.2214/AJR.18.20443. Epub 2019 Jan 2.
The purpose of this study is to evaluate the potential value of machine learning (ML)-based high-dimensional quantitative CT texture analysis in predicting the mutation status of the gene encoding the protein polybromo-1 (PBRM1) in patients with clear cell renal cell carcinoma (RCC).
In this retrospective study, 45 patients with clear cell RCC (29 without the PBRM1 mutation and 16 with the PBRM1 mutation) were identified in The Cancer Genome Atlas-Kidney Renal Clear Cell Carcinoma database. To create stable ML models and balanced classes, the data were augmented to a total of 161 labeled segmentations (87 without the PBRM1 mutation and 74 with the PBRM1 mutation) by obtaining three to five different samples per patient. Texture features were extracted from corticomedullary phase contrast-enhanced CT images with the use of an open-source software package for the extraction of radiomic data from medical images. Reproducibility analysis (intraclass correlation) was performed by two radiologists. Attribute selection and model optimization were done using a wrapper-based classifier-specific algorithm with nested cross-validation. ML classifiers were an artificial neural network (ANN) algorithm and a random forest (RF) algorithm. The models were validated using 10-fold cross-validation. The reference standard was the PBRM1 mutation status. The main performance metric was the AUC value.
Of 828 extracted texture features, 759 had excellent reproducibility. Using 10 selected features, the ANN algorithm correctly classified 88.2% (142 of 161) of the clear cell RCCs in terms of PBRM1 mutation status (AUC value, 0.925). Using five selected features, the RF algorithm correctly classified 95.0% (153 of 161) of the clear cell RCCs (AUC value, 0.987). Overall, the RF algorithm performed better than the ANN algorithm (z score = -2.677; p = 0.007).
ML-based high-dimensional quantitative CT texture analysis might be a feasible and potential method for predicting PBRM1 mutation status in patients with clear cell RCC.
本研究旨在评估基于机器学习(ML)的高维定量 CT 纹理分析在预测透明细胞肾细胞癌(RCC)患者中编码多溴 1 蛋白(PBRM1)基因突变状态方面的潜在价值。
在这项回顾性研究中,我们在 The Cancer Genome Atlas-Kidney Renal Clear Cell Carcinoma 数据库中确定了 45 名透明细胞 RCC 患者(29 名无 PBRM1 突变,16 名有 PBRM1 突变)。为了创建稳定的 ML 模型和平衡的类别,我们通过对每位患者获取三到五个不同的样本,将数据扩充到总共 161 个标记分割(87 个无 PBRM1 突变,74 个有 PBRM1 突变)。使用从医学图像中提取放射组学数据的开源软件包,从皮质髓质期增强 CT 图像中提取纹理特征。两名放射科医生进行了可重复性分析(组内相关系数)。使用基于包装器的分类器特定算法和嵌套交叉验证进行特征选择和模型优化。ML 分类器是人工神经网络(ANN)算法和随机森林(RF)算法。使用 10 折交叉验证验证模型。参考标准是 PBRM1 突变状态。主要性能指标是 AUC 值。
在 828 个提取的纹理特征中,有 759 个具有极好的可重复性。使用 10 个选定的特征,ANN 算法正确地对 161 例透明细胞 RCC 中 88.2%(142 例)的 PBRM1 突变状态进行了分类(AUC 值,0.925)。使用五个选定的特征,RF 算法正确地对 161 例透明细胞 RCC 中的 95.0%(153 例)进行了分类(AUC 值,0.987)。总体而言,RF 算法的性能优于 ANN 算法(z 分数=-2.677;p=0.007)。
基于 ML 的高维定量 CT 纹理分析可能是一种可行且有潜力的方法,可用于预测透明细胞 RCC 患者的 PBRM1 突变状态。