Suppr超能文献

人工智能在泌尿肿瘤诊治中的应用

Application of artificial intelligence in the diagnosis and treatment of urinary tumors.

作者信息

Zhu Mengying, Gu Zhichao, Chen Fang, Chen Xi, Wang Yue, Zhao Guohua

机构信息

Liaoning University of Traditional Chinese Medicine, Shenyang, China.

Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.

出版信息

Front Oncol. 2024 Aug 12;14:1440626. doi: 10.3389/fonc.2024.1440626. eCollection 2024.

Abstract

Diagnosis and treatment of urological tumors, relying on auxiliary data such as medical imaging, while incorporating individual patient characteristics into treatment selection, has long been a key challenge in clinical medicine. Traditionally, clinicians used extensive experience for decision-making, but recent artificial intelligence (AI) advancements offer new solutions. Machine learning (ML) and deep learning (DL), notably convolutional neural networks (CNNs) in medical image recognition, enable precise tumor diagnosis and treatment. These technologies analyze complex medical image patterns, improving accuracy and efficiency. AI systems, by learning from vast datasets, reveal hidden features, offering reliable diagnostics and personalized treatment plans. Early detection is crucial for tumors like renal cell carcinoma (RCC), bladder cancer (BC), and Prostate Cancer (PCa). AI, coupled with data analysis, improves early detection and reduces misdiagnosis rates, enhancing treatment precision. AI's application in urological tumors is a research focus, promising a vital role in urological surgery with improved patient outcomes. This paper examines ML, DL in urological tumors, and AI's role in clinical decisions, providing insights for future AI applications in urological surgery.

摘要

泌尿外科肿瘤的诊断和治疗长期以来一直是临床医学中的一项关键挑战,它依赖于医学成像等辅助数据,同时在治疗选择中纳入患者的个体特征。传统上,临床医生依靠丰富的经验进行决策,但最近人工智能(AI)的进步提供了新的解决方案。机器学习(ML)和深度学习(DL),特别是医学图像识别中的卷积神经网络(CNN),能够实现精确的肿瘤诊断和治疗。这些技术分析复杂的医学图像模式,提高了准确性和效率。人工智能系统通过从大量数据集中学习,揭示隐藏的特征,提供可靠的诊断和个性化的治疗方案。早期检测对于肾细胞癌(RCC)、膀胱癌(BC)和前列腺癌(PCa)等肿瘤至关重要。人工智能与数据分析相结合,提高了早期检测率并降低了误诊率,提高了治疗的精确性。人工智能在泌尿外科肿瘤中的应用是一个研究重点,有望在泌尿外科手术中发挥重要作用,改善患者的治疗效果。本文探讨了机器学习、深度学习在泌尿外科肿瘤中的应用以及人工智能在临床决策中的作用,为人工智能在泌尿外科手术中的未来应用提供见解。

相似文献

7
9
Advancements in Skull Base Surgery: Navigating Complex Challenges with Artificial Intelligence.颅底外科的进展:借助人工智能应对复杂挑战。
Indian J Otolaryngol Head Neck Surg. 2024 Apr;76(2):2184-2190. doi: 10.1007/s12070-023-04415-8. Epub 2023 Dec 20.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验