Suppr超能文献

基于机器学习的多模态数据整合预测透明细胞肾细胞癌转移风险:一项回顾性多中心研究。

Multimodal data integration using machine learning to predict the risk of clear cell renal cancer metastasis: a retrospective multicentre study.

机构信息

Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.

Department of Radiology, Qilu Hospital of Shandong University, Jinan, China.

出版信息

Abdom Radiol (NY). 2024 Jul;49(7):2311-2324. doi: 10.1007/s00261-024-04418-1. Epub 2024 Jun 15.

Abstract

PURPOSE

To develop and validate a predictive combined model for metastasis in patients with clear cell renal cell carcinoma (ccRCC) by integrating multimodal data.

MATERIALS AND METHODS

In this retrospective study, the clinical and imaging data (CT and ultrasound) of patients with ccRCC confirmed by pathology from three tertiary hospitals in different regions were collected from January 2013 to January 2023. We developed three models, including a clinical model, a radiomics model, and a combined model. The performance of the model was determined based on its discriminative power and clinical utility. The evaluation indicators included area under the receiver operating characteristic curve (AUC) value, accuracy, sensitivity, specificity, negative predictive value, positive predictive value and decision curve analysis (DCA) curve.

RESULTS

A total of 251 patients were evaluated. Patients (n = 166) from Shandong University Qilu Hospital (Jinan) were divided into the training cohort, of which 50 patients developed metastases; patients (n = 37) from Shandong University Qilu Hospital (Qingdao) were used as internal testing, of which 15 patients developed metastases; patients (n = 48) from Changzhou Second People's Hospital were used as external testing, of which 13 patients developed metastases. In the training set, the combined model showed the highest performance (AUC, 0.924) in predicting lymph node metastasis (LNM), while the clinical and radiomics models both had AUCs of 0.845 and 0.870, respectively. In the internal testing, the combined model had the highest performance (AUC, 0.877) for predicting LNM, while the AUCs of the clinical and radiomics models were 0.726 and 0.836, respectively. In the external testing, the combined model had the highest performance (AUC, 0.849) for predicting LNM, while the AUCs of the clinical and radiomics models were 0.708 and 0.804, respectively. The DCA curve showed that the combined model had a significant prediction probability in predicting the risk of LNM in ccRCC patients compared with the clinical model or the radiomics model.

CONCLUSION

The combined model was superior to the clinical and radiomics models in predicting LNM in ccRCC patients.

摘要

目的

通过整合多模态数据,开发并验证用于透明细胞肾细胞癌(ccRCC)患者转移预测的联合模型。

材料与方法

本回顾性研究纳入了来自三个不同地区三级医院经病理证实的 ccRCC 患者的临床和影像学(CT 和超声)数据。我们构建了三个模型,包括临床模型、影像组学模型和联合模型。通过比较模型的判别能力和临床实用性来评估模型的性能。评估指标包括受试者工作特征曲线(ROC)下面积(AUC)值、准确率、敏感度、特异度、阴性预测值、阳性预测值和决策曲线分析(DCA)曲线。

结果

共纳入 251 例患者,其中山东大学齐鲁医院(济南)的 166 例患者分为训练队列,50 例患者发生转移;山东大学齐鲁医院(青岛)的 37 例患者用于内部验证,15 例患者发生转移;常州第二人民医院的 48 例患者用于外部验证,13 例患者发生转移。在训练集中,联合模型在预测淋巴结转移(LNM)方面表现最佳(AUC:0.924),而临床模型和影像组学模型的 AUC 分别为 0.845 和 0.870。在内部验证中,联合模型在预测 LNM 方面表现最佳(AUC:0.877),而临床模型和影像组学模型的 AUC 分别为 0.726 和 0.836。在外部验证中,联合模型在预测 LNM 方面表现最佳(AUC:0.849),而临床模型和影像组学模型的 AUC 分别为 0.708 和 0.804。DCA 曲线表明,与临床模型或影像组学模型相比,联合模型在预测 ccRCC 患者 LNM 风险方面具有显著的预测概率。

结论

与临床模型和影像组学模型相比,联合模型在预测 ccRCC 患者 LNM 方面表现更优。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验