University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 19, A-1090 Vienna, Austria.
Phys Chem Chem Phys. 2019 Jan 21;21(3):1023-1028. doi: 10.1039/c8cp06569a. Epub 2019 Jan 2.
The validity of linear response theory (LRT) in computer simulations of solvation dynamics, i.e. the time-dependent Stokes shift, has been debated widely during the last decades. Since the use of LRT is computationally less expensive than the calculation of the true nonequilibrium response, it is often invoked for large systems exhibiting a particularly slow solvation response, e.g. ionic liquids. In the case of ionic liquids, LRT does not only need to capture the correct overall dynamics of the system, but also the contributions and timescales of the respective cation and anion movement. We show by large scale computer simulations that the contribution of the permanent dipoles to the solvation response obeys LRT to some extent, whereas the induced contributions in polarizable simulations lead to a failure of LRT for the respective ion contributions.
在过去的几十年中,线性响应理论(LRT)在溶剂化动力学的计算机模拟中的有效性,即随时间变化的斯托克斯位移,一直存在广泛争议。由于 LRT 的计算成本比真实非平衡响应的计算成本低,因此对于表现出特别慢溶剂化响应的大系统,例如离子液体,通常会使用 LRT。在离子液体的情况下,LRT 不仅需要捕捉系统的正确整体动力学,还需要捕捉各自阳离子和阴离子运动的贡献和时间尺度。我们通过大规模计算机模拟表明,永久偶极子对溶剂化响应的贡献在一定程度上遵循 LRT,而在可极化模拟中感应贡献导致各自离子贡献的 LRT 失效。