Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada.
Am J Physiol Regul Integr Comp Physiol. 2019 Mar 1;316(3):R222-R234. doi: 10.1152/ajpregu.00304.2018. Epub 2019 Jan 2.
Electrogenic sodium-dependent glucose transport along the length of the intestine was compared between the omnivorous Nile tilapia ( Oreochromis niloticus) and the carnivorous rainbow trout ( Oncorhynchus mykiss) in Ussing chambers. In tilapia, a high-affinity, high-capacity kinetic system accounted for the transport throughout the proximal intestine, midintestine, and hindgut segments. Similar dapagliflozin and phloridzin dihydrate inhibition across all segments support this homogenous high-affinity, high-capacity system throughout the tilapia intestine. Genomic and gene expression analysis supported findings by identifying 10 of the known 12 SLC5A family members, with homogeneous expression throughout the segments with dominant expression of sodium-glucose cotransporter 1 (SGLT1; SLC5A1) and sodium-myoinositol cotransporter 2 (SMIT2; SLC5A11). In contrast, trout's electrogenic sodium-dependent glucose absorption was 20-35 times lower and segregated into three significantly different kinetic systems found in different anatomical segments: a high-affinity, low-capacity system in the pyloric ceca; a super-high-affinity, low-capacity system in the midgut; and a low-affinity, low-capacity system in the hindgut. Genomic and gene expression analysis found 5 of the known 12 SLC5A family members with dominant expression of SGLT1 ( SLC5A1), sodium-glucose cotransporter 2 (SGLT2; SLC5A2), and SMIT2 ( SLC5A11) in the pyloric ceca, and only SGLT1 ( SLC5A1) in the midgut, accounting for differences in kinetics between the two. The hindgut presented a low-affinity, low-capacity system partially attributed to a decrease in SGLT1 ( SLC5A1). Overall, the omnivorous tilapia had a higher electrogenic glucose absorption than the carnivorous trout, represented with different kinetic systems and a greater expression and number of SLC5A orthologs. Fish differ from mammals, having hindgut electrogenic glucose absorption and segment specific transport kinetics.
在 Ussing 室中,比较了杂食性尼罗罗非鱼( Oreochromis niloticus)和肉食性虹鳟( Oncorhynchus mykiss)的肠道内沿长度的电致钠依赖性葡萄糖转运。在罗非鱼中,高亲和力,高容量的动力学系统负责整个近端肠,中肠和后肠段的转运。在所有节段均相似的达格列净和根皮苷二水合物抑制作用支持了整个罗非鱼肠道中这种同质高亲和力,高容量系统的观点。基因组和基因表达分析支持了发现的 10 种已知的 12SLC5A 家族成员,它们在各段中具有均匀的表达,主要表达钠-葡萄糖共转运蛋白 1(SGLT1; SLC5A1)和钠-肌醇共转运蛋白 2(SMIT2; SLC5A11)。相比之下,虹鳟的电致钠依赖性葡萄糖吸收低 20-35 倍,并分为在不同解剖段中发现的三个明显不同的动力学系统:幽门盲囊中的高亲和力,低容量系统;中肠中的超高亲和力,低容量系统;以及后肠中的低亲和力,低容量系统。基因组和基因表达分析发现了 5 种已知的 12SLC5A 家族成员,其中 SGLT1(SLC5A1),SGLT2(SLC5A2)和 SMIT2(SLC5A11)在幽门盲囊中表达占优势,而仅在中肠中 SGLT1(SLC5A1)表达占优势,这解释了两种动力学之间的差异。后肠呈现低亲和力,低容量系统,部分归因于 SGLT1(SLC5A1)的减少。总体而言,杂食性罗非鱼的电致葡萄糖吸收能力高于肉食性虹鳟,表现出不同的动力学系统以及更多的 SLC5A 直系同源物的表达和数量。鱼类与哺乳动物不同,具有后肠电致葡萄糖吸收和节段特异性转运动力学。