Suppr超能文献

抑制持续性甲型流感病毒复制揭示了 RIG-I 激活的不同机制。

Inhibition of Ongoing Influenza A Virus Replication Reveals Different Mechanisms of RIG-I Activation.

机构信息

Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

出版信息

J Virol. 2019 Mar 5;93(6). doi: 10.1128/JVI.02066-18. Print 2019 Mar 15.

Abstract

Pattern recognition receptors provide essential nonself immune surveillance within distinct cellular compartments. Retinoic acid-inducible gene I (RIG-I) is one of the primary cytosolic RNA sensors, with an emerging role in the nucleus. It is involved in the spatiotemporal sensing of influenza A virus (IAV) replication, leading to the induction of type I interferons (IFNs). Nonetheless, the physiological viral ligands activating RIG-I during IAV infection remain underexplored. Other than full-length viral genomes, cellular constraints that impede ongoing viral replication likely potentiate an erroneous viral polymerase generating aberrant viral RNA species with RIG-I-activating potential. Here, we investigate the origins of RIG-I-activating viral RNA under two such constraints. Using chemical inhibitors that inhibit continuous viral protein synthesis, we identify the incoming, but not -synthesized, viral defective interfering (DI) genomes contributing to RIG-I activation. In comparison, deprivation of viral nucleoprotein (NP), the key RNA chain elongation factor for the viral polymerase, leads to the production of aberrant viral RNA species activating RIG-I; however, their nature is likely to be distinct from that of DI RNA. Moreover, RIG-I activation in response to NP deprivation is not adversely affected by expression of the nuclear export protein (NEP), which diminishes the generation of a major subset of aberrant viral RNA but facilitates the accumulation of small viral RNA (svRNA). Overall, our results indicate the existence of fundamentally different mechanisms of RIG-I activation under cellular constraints that impede ongoing IAV replication. The induction of an IFN response by IAV is mainly mediated by the RNA sensor RIG-I. The physiological RIG-I ligands produced during IAV infection are not fully elucidated. Cellular constraints leading to the inhibition of ongoing viral replication likely potentiate an erroneous viral polymerase producing aberrant viral RNA species activating RIG-I. Here, we demonstrate that RIG-I activation during chemical inhibition of continuous viral protein synthesis is attributable to the incoming DI genomes. Erroneous viral replication driven by NP deprivation promotes the generation of RIG-I-activating aberrant viral RNA, but their nature is likely to be distinct from that of DI RNA. Our results thus reveal distinct mechanisms of RIG-I activation by IAV under cellular constraints impeding ongoing viral replication. A better understanding of RIG-I sensing of IAV infection provides insight into the development of novel interventions to combat influenza virus infection.

摘要

模式识别受体在不同的细胞区室中提供重要的非自身免疫监视。视黄酸诱导基因 I (RIG-I) 是主要的细胞质 RNA 传感器之一,在核内具有新兴作用。它参与甲型流感病毒 (IAV) 复制的时空感应,导致 I 型干扰素 (IFN) 的诱导。然而,IAV 感染过程中激活 RIG-I 的生理病毒配体仍未得到充分探索。除了全长病毒基因组外,阻碍病毒持续复制的细胞限制因素可能会导致错误的病毒聚合酶产生具有激活 RIG-I 潜力的异常病毒 RNA 种类。在这里,我们研究了在两种这种限制条件下 RIG-I 激活病毒 RNA 的起源。使用抑制持续病毒蛋白合成的化学抑制剂,我们鉴定出参与 RIG-I 激活的是进入但未合成的病毒缺陷干扰 (DI) 基因组。相比之下,剥夺病毒核蛋白 (NP),即病毒聚合酶的关键 RNA 链延伸因子,会导致激活 RIG-I 的异常病毒 RNA 产生;然而,它们的性质可能与 DI RNA 不同。此外,NP 剥夺导致的 RIG-I 激活不受核输出蛋白 (NEP) 的表达影响,NEP 表达会减少主要亚类异常病毒 RNA 的产生,但有利于小病毒 RNA (svRNA) 的积累。总体而言,我们的结果表明,在阻碍 IAV 复制的细胞限制下,RIG-I 激活存在根本不同的机制。IAV 诱导 IFN 反应主要由 RNA 传感器 RIG-I 介导。IAV 感染过程中产生的生理 RIG-I 配体尚未完全阐明。导致持续病毒复制抑制的细胞限制因素可能会导致错误的病毒聚合酶产生激活 RIG-I 的异常病毒 RNA 种类。在这里,我们证明,在持续病毒蛋白合成的化学抑制过程中,RIG-I 的激活归因于进入的 DI 基因组。由 NP 剥夺驱动的错误病毒复制促进了激活 RIG-I 的异常病毒 RNA 的产生,但它们的性质可能与 DI RNA 不同。因此,我们的结果揭示了在阻碍持续病毒复制的细胞限制下,IAV 对 RIG-I 的激活的不同机制。更好地了解 RIG-I 对 IAV 感染的感应为开发新的干预措施来对抗流感病毒感染提供了深入的了解。

相似文献

1
Inhibition of Ongoing Influenza A Virus Replication Reveals Different Mechanisms of RIG-I Activation.
J Virol. 2019 Mar 5;93(6). doi: 10.1128/JVI.02066-18. Print 2019 Mar 15.
5
Influenza A Virus Panhandle Structure Is Directly Involved in RIG-I Activation and Interferon Induction.
J Virol. 2015 Jun;89(11):6067-79. doi: 10.1128/JVI.00232-15. Epub 2015 Mar 25.
10
Autophagy Promotes Replication of Influenza A Virus .
J Virol. 2019 Feb 5;93(4). doi: 10.1128/JVI.01984-18. Print 2019 Feb 15.

引用本文的文献

3
Influenza A virus transcription generates capped cRNAs that activate RIG-I.
bioRxiv. 2024 Dec 3:2024.11.12.623191. doi: 10.1101/2024.11.12.623191.
7
Maximal interferon induction by influenza lacking NS1 is infrequent owing to requirements for replication and export.
PLoS Pathog. 2023 Apr 17;19(4):e1010943. doi: 10.1371/journal.ppat.1010943. eCollection 2023 Apr.
8
9
Library-based analysis reveals segment and length dependent characteristics of defective influenza genomes.
PLoS Pathog. 2021 Dec 9;17(12):e1010125. doi: 10.1371/journal.ppat.1010125. eCollection 2021 Dec.
10
Influenza Virus RNA Synthesis and the Innate Immune Response.
Viruses. 2021 Apr 28;13(5):780. doi: 10.3390/v13050780.

本文引用的文献

1
Nuclear-resident RIG-I senses viral replication inducing antiviral immunity.
Nat Commun. 2018 Aug 10;9(1):3199. doi: 10.1038/s41467-018-05745-w.
2
Reduced accumulation of defective viral genomes contributes to severe outcome in influenza virus infected patients.
PLoS Pathog. 2017 Oct 12;13(10):e1006650. doi: 10.1371/journal.ppat.1006650. eCollection 2017 Oct.
4
Influenza A virus preferentially snatches noncoding RNA caps.
RNA. 2015 Dec;21(12):2067-75. doi: 10.1261/rna.054221.115. Epub 2015 Oct 1.
5
RNA interference of influenza A virus replication by microRNA-adapted lentiviral loop short hairpin RNA.
J Gen Virol. 2015 Oct;96(10):2971-2981. doi: 10.1099/jgv.0.000247. Epub 2015 Jul 17.
7
Sequencing the cap-snatching repertoire of H1N1 influenza provides insight into the mechanism of viral transcription initiation.
Nucleic Acids Res. 2015 May 26;43(10):5052-64. doi: 10.1093/nar/gkv333. Epub 2015 Apr 21.
8
Influenza A Virus Panhandle Structure Is Directly Involved in RIG-I Activation and Interferon Induction.
J Virol. 2015 Jun;89(11):6067-79. doi: 10.1128/JVI.00232-15. Epub 2015 Mar 25.
9
Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I.
Cell Host Microbe. 2015 Mar 11;17(3):309-319. doi: 10.1016/j.chom.2015.01.005. Epub 2015 Feb 19.
10
Influenza virus activation of the interferon system.
Virus Res. 2015 Nov 2;209:11-22. doi: 10.1016/j.virusres.2015.02.003. Epub 2015 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验