University of California, Merced, CA, USA.
University of California, Los Angeles, CA, USA.
Behav Res Methods. 2019 Aug;51(4):1477-1484. doi: 10.3758/s13428-018-1175-8.
Current judgments are systematically biased by prior judgments. Such biases occur in ways that seem to reflect the cognitive system's ability to adapt to statistical regularities within the environment. These cognitive sequential dependencies have primarily been evaluated in carefully controlled laboratory experiments. In this study, we used these well-known laboratory findings to guide our analysis of two datasets, consisting of over 2.2 million business review ratings from Yelp and 4.2 million movie and television review ratings from Amazon. We explored how within-reviewer ratings are influenced by previous ratings. Our findings suggest a contrast effect: Current ratings are systematically biased away from prior ratings, and the magnitude of this bias decays over several reviews. This work is couched within a broader program that aims to use well-established laboratory findings to guide our understanding of patterns in naturally occurring and large-scale behavioral data.
目前的判断会受到先前判断的系统偏差影响。这种偏差的出现方式似乎反映了认知系统适应环境中统计规律的能力。这些认知序列依赖性主要在精心控制的实验室实验中进行了评估。在这项研究中,我们使用这些著名的实验室发现来指导我们对两个数据集的分析,这两个数据集分别由来自 Yelp 的超过 220 万条商业评论评级和来自亚马逊的 420 万条电影和电视评论评级组成。我们探讨了评论者内部评级如何受到先前评级的影响。我们的研究结果表明存在对比效应:当前的评级会受到系统偏差的影响而偏离先前的评级,而且这种偏差的幅度会在几次评论后逐渐减弱。这项工作是在一个更广泛的计划框架内进行的,该计划旨在利用成熟的实验室发现来指导我们理解自然发生的大规模行为数据中的模式。