Department of EEE, SRS College of Engineering and Technology, Salem, India.
Department of EEE, S. A. Engineering College, Chennai, India.
J Med Syst. 2019 Jan 2;43(2):25. doi: 10.1007/s10916-018-1135-y.
Nowadays, automatic tumor detection from brain images is extremely significant for many diagnostic as well as therapeutic purposes, due to the unpredictable shape and appearance of tumors. In medical image analysis, the automatic segmentation of tumors from brain using magnetic resonance imaging (MRI) data is the most critical issue. Existing research has some limitations, such as high processing time and lower accuracy, because of the time required for the training process. In this research, a new automatic segmentation process is introduced using machine learning and a swarm intelligence scheme. Here, a fuzzy logic with spiking neuron model (FL-SNM) is proposed for segmenting the brain tumor region in MR images. Initially, input images are preprocessed to remove Gaussian and Poisson noise using a modified Kuan filter (MKF). In the MKF, the optimal selection of the minimum MSE of image pixels is achieved using a random search algorithm (RSA), which improves the peak signal-to-noise ratio (PSNR). Then, the image is smoothed using an anisotropic diffusion filter (ADF) to reduce the over-filtering problem. Afterwards, to extract statistical texture features, Fisher's linear-discriminant analysis (FLDA) is used. Finally, extracted features are transferred to the FL-SNM process and this scheme effectively segments the tumor region. In FL-SNM, the consequent parameters such as weight and bias play an important role in segmenting the region. Therefore, optimizing the weight parameter values using a chicken behavior-based swarm intelligence (CSI) algorithm, is proposed. The proposed (FL-SNM) scheme attained better performance in terms of high accuracy (94.87%), sensitivity (92.07%), specificity (99.34%), precision rate (89.36%), recall rate (88.39%), F-measure (95.06%), G-mean (95.63%), and DSC rate (91.2%), compared to existing convolutional neural networks (CNNs) and hierarchical self-organizing maps (HSOMs).
如今,由于肿瘤形状和外观不可预测,从脑图像中自动检测肿瘤对于许多诊断和治疗目的都非常重要。在医学图像分析中,使用磁共振成像 (MRI) 数据对肿瘤进行自动分割是最关键的问题。由于训练过程所需的时间,现有研究存在处理时间长和准确性低等局限性。在这项研究中,引入了一种使用机器学习和群体智能方案的新的自动分割过程。在这里,提出了一种用于分割磁共振图像中脑肿瘤区域的模糊逻辑与尖峰神经元模型 (FL-SNM)。最初,使用改进的 Kuan 滤波器 (MKF) 预处理输入图像以去除高斯和泊松噪声。在 MKF 中,使用随机搜索算法 (RSA) 对图像像素的最小均方误差进行最佳选择,从而提高了峰值信噪比 (PSNR)。然后,使用各向异性扩散滤波器 (ADF) 平滑图像以减少过度滤波问题。之后,使用 Fisher 线性判别分析 (FLDA) 提取统计纹理特征。最后,将提取的特征传输到 FL-SNM 过程中,该方案有效地分割了肿瘤区域。在 FL-SNM 中,权重和偏差等结论参数在分割区域方面起着重要作用。因此,提出了使用基于鸡行为的群体智能 (CSI) 算法优化权重参数值。与现有的卷积神经网络 (CNN) 和分层自组织映射 (HSOM) 相比,所提出的 (FL-SNM) 方案在高精度 (94.87%)、灵敏度 (92.07%)、特异性 (99.34%)、精度率 (89.36%)、召回率 (88.39%)、F 度量 (95.06%)、G 均值 (95.63%) 和 DSC 率 (91.2%) 方面表现出更好的性能。