Zhang Yudong, Wang Shuihua, Ji Genlin, Dong Zhengchao
School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China ; Brain Imaging Lab and MRI Unit, New York State Psychiatry Institute and Columbia University, New York, NY 10032, USA.
ScientificWorldJournal. 2013 Sep 16;2013:130134. doi: 10.1155/2013/130134. eCollection 2013.
Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA) to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM) with RBF kernel, using particle swarm optimization (PSO) to optimize the parameters C and σ . Fivefold cross-validation was utilized to avoid overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded from Harvard Medical School website. The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Pick's disease, Alzheimer plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of random selection method. The results showed that the PSO is more effective to build optimal KSVM.
自动异常脑检测对于临床诊断极为重要。在过去几十年中,已经提出了许多方法。在本文中,我们提出了一种新颖的混合系统,用于将给定的脑部磁共振(MR)图像分类为正常或异常。所提出的方法首先采用数字小波变换来提取特征,然后使用主成分分析(PCA)来减少特征空间。之后,我们构建了一个具有径向基函数(RBF)核的核支持向量机(KSVM),使用粒子群优化(PSO)来优化参数C和σ。采用五重交叉验证来避免过拟合。在实验过程中,我们从哈佛医学院网站下载创建了一个包含90张脑部图像的数据集。异常脑部MR图像包括以下疾病:胶质瘤、转移性腺癌、转移性支气管癌、脑膜瘤、肉瘤、阿尔茨海默病、亨廷顿病、运动神经元病、脑钙化、匹克氏病、阿尔茨海默病加视觉失认症、多发性硬化症、艾滋病痴呆、莱姆脑病、疱疹性脑炎、克雅氏病和脑弓形虫病。五重交叉验证分类结果表明,我们的方法实现了97.78%的分类准确率,高于BP神经网络的86.22%和RBF神经网络的91.33%。对于参数选择,我们将PSO与随机选择方法进行了比较。结果表明,PSO在构建最优KSVM方面更有效。