Suppr超能文献

经颅电刺激有限元模型的基准测试:一项对比研究。

Benchmarking transcranial electrical stimulation finite element models: a comparison study.

机构信息

Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America.

出版信息

J Neural Eng. 2019 Apr;16(2):026019. doi: 10.1088/1741-2552/aafbbd. Epub 2019 Jan 3.

Abstract

OBJECTIVE

To compare field measure differences in simulations of transcranial electrical stimulation (tES) generated by variations in finite element (FE) models due to boundary condition specification, use of tissue compartment smoothing filters, and use of free or structured tetrahedral meshes based on magnetic resonance imaging (MRI) data.

APPROACH

A structural MRI head volume was acquired at 1 mm resolution and segmented into ten tissue compartments. Predicted current densities and electric fields were computed in segmented models using modeling pipelines involving either an in-house (block) or a commercial platform commonly used in previous FE tES studies involving smoothed compartments and free meshing procedures (smooth). The same boundary conditions were used for both block and smooth pipelines. Differences caused by varying boundary conditions were examined using a simple geometry. Percentage differences of median current density values in five cortical structures were compared between the two pipelines for three electrode montages (F3-right supraorbital, T7-T8 and Cz-Oz).

MAIN RESULTS

Use of boundary conditions commonly used in previous tES FE studies produced asymmetric current density profiles in the simple geometry. In head models, median current density differences produced by the two pipelines, using the same boundary conditions, were up to 6% (isotropic) and 18% (anisotropic) in structures targeted by each montage. Tangential electric field measures calculated via either pipeline were within the range of values reported in the literature, when averaged over cortical surface patches.

SIGNIFICANCE

Apparently equivalent boundary settings may affect predicted current density outcomes and care must be taken in their specification. Smoothing FE model compartments may not be necessary, and directly translated, voxellated tissue boundaries at 1 mm resolution may be sufficient for use in tES FE studies, greatly reducing processing times. The findings here may be used to inform future current density modeling studies.

摘要

目的

比较由于边界条件指定、使用组织分区平滑滤波器以及根据磁共振成像 (MRI) 数据使用自由或结构四面体网格而在有限元 (FE) 模型的经颅电刺激 (tES) 模拟中产生的场测量差异。

方法

以 1mm 分辨率采集结构 MRI 头部体积,并将其分割成十个组织分区。使用涉及内部(块)或商业平台的建模管道在分割模型中计算预测电流密度和电场,这些平台常用于涉及平滑分区和自由网格程序的先前 FE tES 研究(平滑)。块和平滑管道都使用相同的边界条件。使用简单几何形状检查因边界条件变化引起的差异。对于三种电极排列(F3-右眶上、T7-T8 和 Cz-Oz),比较了两种管道在五个皮质结构中的中值电流密度值的百分比差异。

主要结果

使用先前 tES FE 研究中常用的边界条件在简单几何形状中产生了不对称的电流密度分布。在头部模型中,两种管道使用相同边界条件产生的中值电流密度差异在每个电极排列的目标结构中高达 6%(各向同性)和 18%(各向异性)。通过任一线程计算的切向电场测量值,在平均皮质表面斑块时,都在文献中报道的范围内。

意义

明显等效的边界设置可能会影响预测的电流密度结果,因此在指定边界设置时必须小心。FE 模型分区平滑可能不是必需的,并且直接转换为 1mm 分辨率的体素化组织边界可能足以用于 tES FE 研究,从而大大减少处理时间。此处的发现可用于告知未来的电流密度建模研究。

相似文献

1
Benchmarking transcranial electrical stimulation finite element models: a comparison study.
J Neural Eng. 2019 Apr;16(2):026019. doi: 10.1088/1741-2552/aafbbd. Epub 2019 Jan 3.
2
Projected current density comparison in tDCS block and smooth FE modeling.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:4079-4082. doi: 10.1109/EMBC.2016.7591623.
3
Changing head model extent affects finite element predictions of transcranial direct current stimulation distributions.
J Neural Eng. 2016 Dec;13(6):066006. doi: 10.1088/1741-2560/13/6/066006. Epub 2016 Oct 5.
4
Imaging of current flow in the human head during transcranial electrical therapy.
Brain Stimul. 2017 Jul-Aug;10(4):764-772. doi: 10.1016/j.brs.2017.04.125. Epub 2017 Apr 20.
5
A simple method for EEG guided transcranial electrical stimulation without models.
J Neural Eng. 2016 Jun;13(3):036022. doi: 10.1088/1741-2560/13/3/036022. Epub 2016 May 11.
7
Modeling transcranial electrical stimulation in the aging brain.
Brain Stimul. 2020 May-Jun;13(3):664-674. doi: 10.1016/j.brs.2020.02.007. Epub 2020 Feb 6.
8
A comparison between block and smooth modeling in finite element simulations of tDCS.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:3403-6. doi: 10.1109/EMBC.2015.7319123.
9
Effects of Electrode Drift in Transcranial Direct Current Stimulation.
Brain Stimul. 2015 May-Jun;8(3):515-9. doi: 10.1016/j.brs.2014.12.007. Epub 2014 Dec 24.
10
The New York Head-A precise standardized volume conductor model for EEG source localization and tES targeting.
Neuroimage. 2016 Oct 15;140:150-62. doi: 10.1016/j.neuroimage.2015.12.019. Epub 2015 Dec 17.

引用本文的文献

1
Precise and Rapid Whole-Head Segmentation from Magnetic Resonance Images of Older Adults using Deep Learning.
Imaging Neurosci (Camb). 2024 Mar;2. doi: 10.1162/imag_a_00090. Epub 2024 Feb 13.
3
Impact of electrode selection on modeling tDCS in the aging brain.
Front Hum Neurosci. 2023 Nov 24;17:1274114. doi: 10.3389/fnhum.2023.1274114. eCollection 2023.
4
Focality-Oriented Selection of Current Dose for Transcranial Direct Current Stimulation.
J Pers Med. 2021 Sep 21;11(9):940. doi: 10.3390/jpm11090940.
5
Individualized tDCS modeling predicts functional connectivity changes within the working memory network in older adults.
Brain Stimul. 2021 Sep-Oct;14(5):1205-1215. doi: 10.1016/j.brs.2021.08.003. Epub 2021 Aug 8.
7
White matter hyperintensities affect transcranial electrical stimulation in the aging brain.
Brain Stimul. 2021 Jan-Feb;14(1):69-73. doi: 10.1016/j.brs.2020.11.009. Epub 2020 Nov 17.
9
Modeling transcranial electrical stimulation in the aging brain.
Brain Stimul. 2020 May-Jun;13(3):664-674. doi: 10.1016/j.brs.2020.02.007. Epub 2020 Feb 6.
10
Conditions for numerically accurate TMS electric field simulation.
Brain Stimul. 2020 Jan-Feb;13(1):157-166. doi: 10.1016/j.brs.2019.09.015. Epub 2019 Oct 3.

本文引用的文献

1
Low-Frequency Conductivity Tensor Imaging of the Human Head In Vivo Using DT-MREIT: First Study.
IEEE Trans Med Imaging. 2018 Apr;37(4):966-976. doi: 10.1109/TMI.2017.2783348.
3
Evaluation of Numerical Techniques for Solving the Current Injection Problem in Biological Tissues.
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:876-880. doi: 10.1109/ISBI.2016.7493405. Epub 2016 Jun 16.
4
Imaging of current flow in the human head during transcranial electrical therapy.
Brain Stimul. 2017 Jul-Aug;10(4):764-772. doi: 10.1016/j.brs.2017.04.125. Epub 2017 Apr 20.
5
Evaluation of the electric field in the brain during transcranial direct current stimulation: A sensitivity analysis.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1778-1781. doi: 10.1109/EMBC.2016.7591062.
7
A Mixed Finite Element Method to Solve the EEG Forward Problem.
IEEE Trans Med Imaging. 2017 Apr;36(4):930-941. doi: 10.1109/TMI.2016.2624634. Epub 2016 Nov 2.
8
Changing head model extent affects finite element predictions of transcranial direct current stimulation distributions.
J Neural Eng. 2016 Dec;13(6):066006. doi: 10.1088/1741-2560/13/6/066006. Epub 2016 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验