Stolte Skylar E, Indahlastari Aprinda, Chen Jason, Albizu Alejandro, Dunn Ayden, Pedersen Samantha, See Kyle B, Woods Adam J, Fang Ruogu
J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA.
Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA.
Imaging Neurosci (Camb). 2024 Mar;2. doi: 10.1162/imag_a_00090. Epub 2024 Feb 13.
Whole-head segmentation from Magnetic Resonance Images (MRI) establishes the foundation for individualized computational models using finite element method (FEM). This foundation paves the path for computer-aided solutions in fields, particularly in non-invasive brain stimulation. Most current automatic head segmentation tools are developed using healthy young adults. Thus, they may neglect the older population that is more prone to age-related structural decline such as brain atrophy. In this work, we present a new deep learning method called GRACE, which stands for eneral, apid, nd omprehensive whole-had tissue segmentation. GRACE is trained and validated on a novel dataset that consists of 177 manually corrected MR-derived reference segmentations that have undergone meticulous manual review. Each T1-weighted MRI volume is segmented into 11 tissue types, including white matter, grey matter, eyes, cerebrospinal fluid, air, blood vessel, cancellous bone, cortical bone, skin, fat, and muscle. To the best of our knowledge, this work contains the largest manually corrected dataset to date in terms of number of MRIs and segmented tissues. GRACE outperforms five freely available software tools and a traditional 3D U-Net on a five-tissue segmentation task. On this task, GRACE achieves an average Hausdorff Distance of 0.21, which exceeds the runner-up at an average Hausdorff Distance of 0.36. GRACE can segment a whole-head MRI in about 3 seconds, while the fastest software tool takes about 3 minutes. In summary, GRACE segments a spectrum of tissue types from older adults T1-MRI scans at favorable accuracy and speed. The trained GRACE model is optimized on older adult heads to enable high-precision modeling in age-related brain disorders. To support open science, the GRACE code and trained weights are made available online and open to the research community at https://github.com/lab-smile/GRACE.
从磁共振成像(MRI)中进行全脑分割为使用有限元方法(FEM)的个体化计算模型奠定了基础。这一基础为各领域的计算机辅助解决方案铺平了道路,尤其是在无创脑刺激领域。当前大多数自动脑分割工具都是基于健康的年轻人开发的。因此,它们可能会忽略更容易出现与年龄相关的结构衰退(如脑萎缩)的老年人群体。在这项工作中,我们提出了一种名为GRACE的新深度学习方法,它代表通用、快速且全面的全脑组织分割。GRACE在一个新颖的数据集上进行训练和验证,该数据集由177个经过精心人工审核的磁共振成像衍生的手动校正参考分割组成。每个T1加权MRI体积被分割为11种组织类型,包括白质、灰质、眼睛、脑脊液、空气、血管、松质骨、皮质骨、皮肤、脂肪和肌肉。据我们所知,就MRI数量和分割组织而言,这项工作包含了迄今为止最大的人工校正数据集。在一项五组织分割任务中,GRACE优于五个免费软件工具和一个传统的3D U-Net。在这项任务中,GRACE的平均豪斯多夫距离为0.21,超过了第二名的平均豪斯多夫距离0.36。GRACE可以在大约3秒内分割一个全脑MRI,而最快的软件工具则需要大约3分钟。总之,GRACE能以良好的准确性和速度从老年成人T1-MRI扫描中分割出一系列组织类型。经过训练的GRACE模型在老年成人头部上进行了优化,以实现与年龄相关的脑部疾病的高精度建模。为了支持开放科学,GRACE代码和训练权重可在网上获取,并在https://github.com/lab-smile/GRACE向研究社区开放。