Suppr超能文献

分枝杆菌甲基甘露聚糖的生物合成需要一种独特的 1--甲基转移酶,该酶特异性识别 3--甲基化的甘露糖苷。

Biosynthesis of mycobacterial methylmannose polysaccharides requires a unique 1--methyltransferase specific for 3--methylated mannosides.

机构信息

Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal.

Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.

出版信息

Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):835-844. doi: 10.1073/pnas.1813450116. Epub 2019 Jan 3.

Abstract

Mycobacteria are a wide group of organisms that includes strict pathogens, such as , as well as environmental species known as nontuberculous mycobacteria (NTM), some of which-namely -are important opportunistic pathogens. In addition to a distinctive cell envelope mediating critical interactions with the host immune system and largely responsible for their formidable resistance to antimicrobials, mycobacteria synthesize rare intracellular polymethylated polysaccharides implicated in the modulation of fatty acid metabolism, thus critical players in cell envelope assembly. These are the 6--methylglucose lipopolysaccharides (MGLP) ubiquitously detected across the genus, and the 3--methylmannose polysaccharides (MMP) identified only in NTM. The polymethylated nature of these polysaccharides renders the intervening methyltransferases essential for their optimal function. Although the knowledge of MGLP biogenesis is greater than that of MMP biosynthesis, the methyltransferases of both pathways remain uncharacterized. Here, we report the identification and characterization of a unique -adenosyl-l-methionine-dependent sugar 1--methyltransferase (MeT1) from that specifically blocks the 1-OH position of 3,3'-di--methyl-4α-mannobiose, a probable early precursor of MMP, which we chemically synthesized. The high-resolution 3D structure of MeT1 in complex with its exhausted cofactor, -adenosyl-l-homocysteine, together with mutagenesis studies and molecular docking simulations, unveiled the enzyme's reaction mechanism. The functional and structural properties of this unique sugar methyltransferase further our knowledge of MMP biosynthesis and provide important tools to dissect the role of MMP in NTM physiology and resilience.

摘要

分枝杆菌是一个广泛的生物体群体,包括严格的病原体,如 ,以及被称为非结核分枝杆菌(NTM)的环境物种,其中一些-即-是重要的机会性病原体。除了介导与宿主免疫系统的关键相互作用的独特细胞包膜外,分枝杆菌还合成了在调节脂肪酸代谢中起重要作用的稀有细胞内多甲基多糖,因此是细胞包膜组装的关键因素。这些是普遍存在于属中的 6--甲基葡萄糖脂多糖(MGLP)和仅在 NTM 中鉴定出的 3--甲基甘露糖多糖(MMP)。这些多糖的多甲基化性质使中间甲基转移酶成为其最佳功能所必需的。尽管 MGLP 生物发生的知识大于 MMP 生物合成的知识,但两条途径的甲基转移酶仍未被描述。在这里,我们报道了一种独特的 -腺苷基-l-甲硫氨酸依赖性糖 1--甲基转移酶(MeT1)的鉴定和表征,该酶来自 ,可特异性阻断 MMP 的 3,3'-二--甲基-4α-甘露二糖的 1-OH 位置,我们化学合成了该物质。MeT1 与其耗尽的辅因子 -腺苷基-l-高半胱氨酸复合物的高分辨率 3D 结构,以及突变研究和分子对接模拟,揭示了该酶的反应机制。这种独特的糖甲基转移酶的功能和结构特性进一步了解了 MMP 生物合成,并提供了重要的工具来剖析 MMP 在 NTM 生理学和弹性中的作用。

相似文献

4
Polymethylated polysaccharides from Mycobacterium species revisited.分枝杆菌属的多甲基化多糖再探讨
J Biol Chem. 2009 Jan 23;284(4):1949-53. doi: 10.1074/jbc.R800047200. Epub 2008 Sep 11.
9

本文引用的文献

2
Nontuberculous Mycobacteria-Overview.非结核分枝杆菌概述。
Microbiol Spectr. 2017 Jan;5(1). doi: 10.1128/microbiolspec.TNMI7-0024-2016.
9
Assembly of the Mycobacterial Cell Wall.分枝杆菌细胞壁的组装。
Annu Rev Microbiol. 2015;69:405-23. doi: 10.1146/annurev-micro-091014-104121.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验