Suppr超能文献

阐明生物材料中甲基丙烯酸盐单体潜在毒性的细胞和分子机制。

Illuminating the cellular and molecular mechanism of the potential toxicity of methacrylate monomers used in biomaterials.

机构信息

Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, Olomouc, Czech Republic.

Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Hněvotínská 5, Olomouc, Czech Republic.

出版信息

Drug Chem Toxicol. 2020 May;43(3):266-278. doi: 10.1080/01480545.2018.1488860. Epub 2019 Jan 4.

Abstract

The cytotoxicity of methacrylate-based biopolymers crosslinked by photopolymerization has been attributed mainly to residual methacrylate monomers released due to incomplete polymerization. The residual monomers, primarily triethyleneglycol dimethacrylate or 2-hydroxyethyl methacrylate, may irritate adjacent tissue, or be released into the bloodstream and reach practically all tissues. Increased production of reactive oxygen species, which may be connected to concomitant glutathione depletion, has been the most noticeable effect observed following the exposure of cells to methacrylates. Radical scavengers such as glutathione or N-acetylcysteine represent the most important cellular strategy against methacrylate-induced toxicity by direct adduct formation, resulting in monomer detoxification. Reactive oxygen species may participate in methacrylate-induced genotoxic or pro-apoptotic effects and cell-cycle arrest via induction of corresponding molecular pathways in cells. A deeper understanding of the biological mechanisms and effects of methacrylates widely used in various bioapplications may enable a better estimation of potential risks and thus, selection of a more appropriate composition of polymer material to eliminate potentially harmful substances such as triethyleneglycol dimethacrylate.

摘要

光聚合交联的甲基丙烯酸盐基生物聚合物的细胞毒性主要归因于由于聚合不完全而释放的残留甲基丙烯酸盐单体。残留单体,主要是三乙二醇二甲基丙烯酸酯或 2-羟乙基甲基丙烯酸酯,可能会刺激相邻组织,或释放到血液中并到达几乎所有组织。在细胞暴露于甲基丙烯酸盐后,最明显的观察到的效果是活性氧的产生增加,这可能与同时的谷胱甘肽耗竭有关。作为最有效的细胞策略,谷胱甘肽或 N-乙酰半胱氨酸等自由基清除剂通过直接形成加合物,导致单体解毒,从而对抗甲基丙烯酸盐诱导的毒性。活性氧可能通过在细胞中诱导相应的分子途径,参与甲基丙烯酸盐诱导的遗传毒性或促凋亡作用和细胞周期停滞。对广泛用于各种生物应用的甲基丙烯酸盐的生物学机制和影响有更深入的了解,可以更好地估计潜在风险,从而选择更合适的聚合物材料组成,以消除可能有害的物质,如三乙二醇二甲基丙烯酸酯。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验