Anal Chem. 2019 Feb 5;91(3):2516-2524. doi: 10.1021/acs.analchem.8b05449. Epub 2019 Jan 17.
Scanning ion conductance microscopy (SICM) is becoming a powerful multifunctional tool for probing and analyzing surfaces and interfaces. This work outlines methodology for the quantitative controlled delivery of ionic redox-active molecules from a nanopipette to a substrate electrode, with a high degree of spatial and temporal precision. Through control of the SICM bias applied between a quasi-reference counter electrode (QRCE) in the SICM nanopipette probe and a similar electrode in bulk solution, it is shown that ionic redox species can be held inside the nanopipette, and then pulse-delivered to a defined region of a substrate positioned beneath the nanopipette. A self-referencing hopping mode imaging protocol is implemented, where reagent is released in bulk solution (reference measurement) and near the substrate surface at each pixel in an image, with the tip and substrate currents measured throughout. Analysis of the tip and substrate current data provides an improved understanding of mass transport and nanoscale delivery in SICM and a new means of synchronously mapping electrode reactivity, surface topography, and charge. Experiments on Ru(NH) reduction to Ru(NH) and dopamine oxidation in aqueous solution at a carbon fiber ultramicroelectrode (UME), used as the substrate, illustrate these aspects. Finite element method (FEM) modeling provides quantitative understanding of molecular delivery in SICM. The approach outlined constitutes a new methodology for electrode mapping and provides improved insights on the use of SICM for controlled delivery to interfaces generally.
扫描离子电导显微镜(SICM)正成为探测和分析表面和界面的强大多功能工具。这项工作概述了从纳米管向基底电极定量控制输送离子氧化还原活性分子的方法,具有高度的空间和时间精度。通过控制 SICM 纳米管探针中的准参考对电极(QRCE)和体相溶液中类似电极之间的 SICM 偏压,可以将离子氧化还原物种保持在纳米管内,然后将其脉冲输送到位于纳米管下方的基底的定义区域。实现了自参考跳跃模式成像协议,其中在每个图像像素处的体相溶液(参考测量)和基底表面附近释放试剂,同时测量整个过程中的尖端和基底电流。对尖端和基底电流数据的分析提供了对 SICM 中质量传输和纳米级输送的更好理解,以及同步映射电极反应性、表面形貌和电荷的新方法。在碳纤维超微电极(UME)作为基底的水溶液中进行的 Ru(NH)还原为 Ru(NH)和多巴胺氧化实验说明了这些方面。有限元方法(FEM)建模提供了对 SICM 中分子输送的定量理解。所概述的方法构成了电极映射的新方法,并为 SICM 用于一般界面控制输送提供了更好的见解。