The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China.
ACS Appl Mater Interfaces. 2019 Jan 23;11(3):3617-3626. doi: 10.1021/acsami.8b21238. Epub 2019 Jan 11.
The identification and detection of cancer biomarkers in early stages is an important issue for the therapy of cancer. However, most methods are time-consuming and have limited sensing sensitivity and specificity. In this work, we prepared a novel plasmonic multilayered core-shell-satellite nanostructure (Au@Ag@SiO-AuNP) consisting of a gold nanosphere with a silver coating core (Au@Ag), an ultrathin continuous silica (SiO) shell, and a high coverage of gold nanosphere (AuNP) satellites. The Au@Ag core is a prominent surface enhanced Raman scattering (SERS) platform, and the thin SiO layer exhibits a long-range plasmon coupling between the Au@Ag core to the AuNP satellites, further leading to enhanced Raman scattering. Meanwhile, the outer AuNP satellites have a high biocompatibility and long-term stability. Combining the above advantages, the well-designed metallic nanoassemblies would be a promising candidate for SERS-based applications in biochemistry. For specific detection of alpha-fetoprotein (AFP), we utilized the SERS-active core-shell-satellite nanostructures modified with AFP antibody as immune probes and nitrocellulose membrane (NC) stabilized captured anti-AFP antibodies as solid substrate. To improve the detection performance, we further systematically optimized the parameters, including the silver coating thickness of the Au@Ag core and the density and size of the satellite AuNPs. Under the optimized conditions, AFP could be detected by the SERS-based sandwich immunoassay with an ultralow detection limit of 0.3 fg/mL, and the method exhibited a wide linear response from 1 fg/mL to 1 ng/mL. The limit of detection (LOD) was considerably lower than conventional methods in the literature. This work relies on the unique Au@Ag@SiO-AuNP nanostructures as the immune probe develops a new outlook for the application of multilayered nanoassemblies and demonstrates the great potential in early tumor marker detection.
在癌症治疗中,早期识别和检测癌症生物标志物是一个重要问题。然而,大多数方法耗时且具有有限的传感灵敏度和特异性。在这项工作中,我们制备了一种新型等离子体多层核壳卫星纳米结构(Au@Ag@SiO-AuNP),由金纳米球涂覆银核(Au@Ag)、超薄连续二氧化硅(SiO)壳和高覆盖率金纳米球(AuNP)卫星组成。Au@Ag 核是一个突出的表面增强拉曼散射(SERS)平台,而薄的 SiO 层在 Au@Ag 核与 AuNP 卫星之间表现出长程等离子体耦合,进一步导致拉曼散射增强。同时,外层 AuNP 卫星具有高生物相容性和长期稳定性。结合上述优点,精心设计的金属纳米组装体将成为基于 SERS 的生物化学应用的有前途的候选者。为了特异性检测甲胎蛋白(AFP),我们利用修饰有 AFP 抗体的 SERS 活性核壳卫星纳米结构作为免疫探针,并用硝酸纤维素膜(NC)稳定捕获的抗 AFP 抗体作为固体基底。为了提高检测性能,我们进一步系统地优化了参数,包括 Au@Ag 核的银涂层厚度以及卫星 AuNP 的密度和尺寸。在优化条件下,基于 SERS 的夹心免疫测定可以检测到 AFP,其检测限低至 0.3 fg/mL,并且该方法在 1 fg/mL 至 1 ng/mL 的范围内呈现出宽的线性响应。检测限(LOD)明显低于文献中的常规方法。这项工作依赖于独特的 Au@Ag@SiO-AuNP 纳米结构作为免疫探针,为多层纳米组装体的应用开辟了新的前景,并展示了在早期肿瘤标志物检测中的巨大潜力。