Suppr超能文献

点中拓扑和非拓扑现象的界限变得模糊。

Blurring the Boundaries Between Topological and Nontopological Phenomena in Dots.

机构信息

Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, São Paulo, Brazil.

Department of Physics and Astronomy and Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, USA.

出版信息

Phys Rev Lett. 2018 Dec 21;121(25):256804. doi: 10.1103/PhysRevLett.121.256804.

Abstract

We investigate the electronic and transport properties of topological and nontopological InAs_{0.85}Bi_{0.15} quantum dots (QDs) described by a ∼30  meV gapped Bernevig-Hughes-Zhang (BHZ) model with cylindrical confinement, i.e., "BHZ dots." Via modified Bessel functions, we analytically show that nontopological dots quite unexpectedly have discrete helical edge states, i.e., Kramers pairs with spin-angular-momentum locking similar to topological dots. These unusual nontopological edge states are geometrically protected due to confinement for a wide range of parameters and remarkably contrast with the bulk-edge correspondence in topological insulators, as no bulk topological invariant guarantees their existence. Moreover, for a conduction window with four edge states, we find that the two-terminal conductance G versus the QD radius R and the gate V_{g} controlling its levels shows a double peak at 2e^{2}/h for both topological and trivial BHZ QDs. This is in stark contrast to conductance measurements in 2D quantum spin Hall and trivial insulators. All of these results were also found in HgTe QDs. Bi-based BHZ dots should also prove important as hosts to room temperature edge spin qubits.

摘要

我们研究了由具有圆柱限制的约 30meV 带隙的 Bernevig-Hughes-Zhang(BHZ)模型描述的拓扑和非拓扑 InAs_{0.85}Bi_{0.15}量子点(QD)的电子和输运性质,即“BHZ 点”。通过修正的贝塞尔函数,我们分析表明,非拓扑点出人意料地具有离散的螺旋边缘态,即具有自旋-角动量锁定的 Kramers 对,类似于拓扑点。这些不寻常的非拓扑边缘态由于限制而具有几何保护,对于广泛的参数范围,并且与拓扑绝缘体中的体边对应关系形成鲜明对比,因为没有体拓扑不变量保证它们的存在。此外,对于具有四个边缘态的传导窗口,我们发现,对于拓扑和非拓扑 BHZ QD,两个端子的电导 G 对 QD 半径 R 和控制其能级的栅极 V_{g}的关系在 2e^{2}/h 处显示出双峰。这与 2D 量子自旋霍尔和非拓扑绝缘体中的电导测量形成鲜明对比。所有这些结果也在 HgTe QD 中发现。基于 Bi 的 BHZ 点也有望成为室温边缘自旋量子位的重要宿主。

相似文献

1
Blurring the Boundaries Between Topological and Nontopological Phenomena in Dots.
Phys Rev Lett. 2018 Dec 21;121(25):256804. doi: 10.1103/PhysRevLett.121.256804.
2
Edge States and Strain-Driven Topological Phase Transitions in Quantum Dots in Topological Insulators.
Nanomaterials (Basel). 2022 Dec 1;12(23):4283. doi: 10.3390/nano12234283.
3
Observation of Time-Reversal Invariant Helical Edge-Modes in Bilayer Graphene/WSe Heterostructure.
ACS Nano. 2021 Jan 26;15(1):916-922. doi: 10.1021/acsnano.0c07524. Epub 2020 Dec 30.
5
Continuum theory of edge states of topological insulators: variational principle and boundary conditions.
J Phys Condens Matter. 2012 Sep 5;24(35):355001. doi: 10.1088/0953-8984/24/35/355001. Epub 2012 Jul 27.
6
Topological Protection Brought to Light by the Time-Reversal Symmetry Breaking.
Phys Rev Lett. 2019 Aug 2;123(5):056801. doi: 10.1103/PhysRevLett.123.056801.
7
A topological Dirac insulator in a quantum spin Hall phase.
Nature. 2008 Apr 24;452(7190):970-4. doi: 10.1038/nature06843.
8
Charge and spin transport in edge channels of a ν=0 quantum Hall system on the surface of topological insulators.
Phys Rev Lett. 2015 Apr 10;114(14):146803. doi: 10.1103/PhysRevLett.114.146803. Epub 2015 Apr 9.
9
Helical quantum states in HgTe quantum dots with inverted band structures.
Phys Rev Lett. 2011 May 20;106(20):206802. doi: 10.1103/PhysRevLett.106.206802. Epub 2011 May 16.
10
h/e Superconducting Quantum Interference through Trivial Edge States in InAs.
Phys Rev Lett. 2018 Jan 26;120(4):047702. doi: 10.1103/PhysRevLett.120.047702.

引用本文的文献

1
Engineering topological phases in triple HgTe/CdTe quantum wells.
Sci Rep. 2022 Feb 16;12(1):2617. doi: 10.1038/s41598-022-06431-0.
2
Higher-order topological insulator in cubic semiconductor quantum wells.
Sci Rep. 2021 Oct 26;11(1):21060. doi: 10.1038/s41598-021-00577-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验