Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, São Paulo, Brazil.
Department of Physics and Astronomy and Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, USA.
Phys Rev Lett. 2018 Dec 21;121(25):256804. doi: 10.1103/PhysRevLett.121.256804.
We investigate the electronic and transport properties of topological and nontopological InAs_{0.85}Bi_{0.15} quantum dots (QDs) described by a ∼30 meV gapped Bernevig-Hughes-Zhang (BHZ) model with cylindrical confinement, i.e., "BHZ dots." Via modified Bessel functions, we analytically show that nontopological dots quite unexpectedly have discrete helical edge states, i.e., Kramers pairs with spin-angular-momentum locking similar to topological dots. These unusual nontopological edge states are geometrically protected due to confinement for a wide range of parameters and remarkably contrast with the bulk-edge correspondence in topological insulators, as no bulk topological invariant guarantees their existence. Moreover, for a conduction window with four edge states, we find that the two-terminal conductance G versus the QD radius R and the gate V_{g} controlling its levels shows a double peak at 2e^{2}/h for both topological and trivial BHZ QDs. This is in stark contrast to conductance measurements in 2D quantum spin Hall and trivial insulators. All of these results were also found in HgTe QDs. Bi-based BHZ dots should also prove important as hosts to room temperature edge spin qubits.
我们研究了由具有圆柱限制的约 30meV 带隙的 Bernevig-Hughes-Zhang(BHZ)模型描述的拓扑和非拓扑 InAs_{0.85}Bi_{0.15}量子点(QD)的电子和输运性质,即“BHZ 点”。通过修正的贝塞尔函数,我们分析表明,非拓扑点出人意料地具有离散的螺旋边缘态,即具有自旋-角动量锁定的 Kramers 对,类似于拓扑点。这些不寻常的非拓扑边缘态由于限制而具有几何保护,对于广泛的参数范围,并且与拓扑绝缘体中的体边对应关系形成鲜明对比,因为没有体拓扑不变量保证它们的存在。此外,对于具有四个边缘态的传导窗口,我们发现,对于拓扑和非拓扑 BHZ QD,两个端子的电导 G 对 QD 半径 R 和控制其能级的栅极 V_{g}的关系在 2e^{2}/h 处显示出双峰。这与 2D 量子自旋霍尔和非拓扑绝缘体中的电导测量形成鲜明对比。所有这些结果也在 HgTe QD 中发现。基于 Bi 的 BHZ 点也有望成为室温边缘自旋量子位的重要宿主。