Tiwari Priya, Srivastav Saurabh Kumar, Ray Sujay, Das Tanmoy, Bid Aveek
Department of Physics, Indian Institute of Science, Bangalore 560012, India.
ACS Nano. 2021 Jan 26;15(1):916-922. doi: 10.1021/acsnano.0c07524. Epub 2020 Dec 30.
Topological insulators, along with Chern insulators and quantum Hall insulator phases, are considered as paradigms for symmetry protected topological phases of matter. This article reports the experimental realization of the time-reversal invariant helical edge-modes in bilayer graphene/monolayer WSe-based heterostructures-a phase generally considered as a precursor to the field of generic topological insulators. Our observation of this elusive phase depended crucially on our ability to create mesoscopic devices comprising both a moiré superlattice potential and strong spin-orbit coupling; this resulted in materials whose electronic band structure could be tuned from trivial to topological by an external displacement field. We find that the topological phase is characterized by a bulk bandgap and by helical edge-modes with electrical conductance quantized exactly to 2/ in zero external magnetic field. We put the helical edge-modes on firm ground through supporting experiments, including the verification of predictions of the Landauer-Büttiker model for quantum transport in multiterminal mesoscopic devices. Our nonlocal transport properties measurements show that the helical edge-modes are dissipationless and equilibrate at the contact probes. We achieved the tunability of the different topological phases with electric and magnetic fields, which allowed us to achieve topological phase transitions between trivial and multiple, distinct topological phases. We also present results of a theoretical study of a realistic model which, in addition to replicating our experimental results, explains the origin of the topological insulating bulk and helical edge-modes. Our experimental and theoretical results establish a viable route to realizing the time-reversal invariant topological phase of matter.
拓扑绝缘体与陈绝缘体和量子霍尔绝缘体相一起,被视为物质对称保护拓扑相的范例。本文报道了在双层石墨烯/单层WSe基异质结构中时间反演不变螺旋边缘模式的实验实现——这一相通常被认为是一般拓扑绝缘体领域的先驱。我们对这一难以捉摸的相的观测关键取决于我们制造包含莫尔超晶格势和强自旋轨道耦合的介观器件的能力;这导致了其电子能带结构可通过外部位移场从平凡态调谐到拓扑态的材料。我们发现,拓扑相的特征是体能带隙以及在零外磁场中电导精确量子化为2/e的螺旋边缘模式。我们通过包括验证多端介观器件中量子输运的朗道尔 - 布蒂克尔模型预测在内的支持性实验,为螺旋边缘模式奠定了坚实基础。我们的非局部输运性质测量表明,螺旋边缘模式是无耗散的,并且在接触探针处达到平衡。我们实现了不同拓扑相在电场和磁场作用下的可调谐性,这使我们能够在平凡态和多个不同拓扑相之间实现拓扑相变。我们还展示了一个现实模型的理论研究结果,该模型除了复制我们的实验结果外,还解释了拓扑绝缘体态和螺旋边缘模式的起源。我们的实验和理论结果为实现物质的时间反演不变拓扑相建立了一条可行的途径。