CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada 9501-801, Portugal.
Departamento de Biologia, Faculdade de Ciências e Tecnologia da Universidade dos Açores, Ponta Delgada 9501-801, Portugal.
Biol Rev Camb Philos Soc. 2019 Jun;94(3):1116-1142. doi: 10.1111/brv.12492. Epub 2019 Jan 4.
A synthetic model is presented to enlarge the evolutionary framework of the General Dynamic Model (GDM) and the Glacial Sensitive Model (GSM) of oceanic island biogeography from the terrestrial to the marine realm. The proposed 'Sea-Level Sensitive' dynamic model (SLS) of marine island biogeography integrates historical and ecological biogeography with patterns of glacio-eustasy, merging concepts from areas as diverse as taxonomy, biogeography, marine biology, volcanology, sedimentology, stratigraphy, palaeontology, geochronology and geomorphology. Fundamental to the SLS model is the dynamic variation of the littoral area of volcanic oceanic islands (defined as the area between the intertidal and the 50-m isobath) in response to sea-level oscillations driven by glacial-interglacial cycles. The following questions are considered by means of this revision: (i) what was the impact of (global) glacio-eustatic sea-level oscillations, particularly those of the Pleistocene glacial-interglacial episodes, on the littoral marine fauna and flora of volcanic oceanic islands? (ii) What are the main factors that explain the present littoral marine biodiversity on volcanic oceanic islands? (iii) How can differences in historical and ecological biogeography be reconciled, from a marine point of view? These questions are addressed by compiling the bathymetry of 11 Atlantic archipelagos/islands to obtain quantitative data regarding changes in the littoral area based on Pleistocene sea-level oscillations, from 150 thousand years ago (ka) to the present. Within the framework of a model sensitive to changing sea levels, we discuss the principal factors affecting the geographical range of marine species; the relationships between modes of larval development, dispersal strategies and geographical range; the relationships between times of speciation, modes of larval development, ecological zonation and geographical range; the influence of sea-surface temperatures and latitude on littoral marine species diversity; the effect of eustatic sea-level changes and their impact on the littoral marine biota; island marine species-area relationships; and finally, the physical effects of island ontogeny and its associated submarine topography and marine substrate on littoral biota. Based on the SLS dynamic model, we offer a number of predictions for tropical, subtropical and temperate volcanic oceanic islands on how rates of immigration, colonization, in-situ speciation, local disappearance, and extinction interact and affect the marine biodiversity around islands during glacials and interglacials, thus allowing future testing of the theory.
提出了一个综合模型,以扩大海洋岛屿生物地理学的通用动态模型(GDM)和冰川敏感模型(GSM)的进化框架,从陆地扩展到海洋领域。所提出的海洋岛屿生物地理学的“海平面敏感”动态模型(SLS)将历史和生态生物地理学与冰川均衡的模式相结合,融合了来自分类学、生物地理学、海洋生物学、火山学、沉积学、地层学、古生物学、地质年代学和地貌学等不同领域的概念。SLS 模型的基础是响应由冰川间冰期循环驱动的海平面波动,火山海洋岛屿的潮间带区域(定义为潮间带和 50 米等深线之间的区域)的动态变化。通过这次修订,考虑了以下问题:(i) 全球冰川均衡海平面波动,特别是更新世冰川间冰期事件,对火山海洋岛屿的滨海海洋动植物有何影响?(ii) 解释火山海洋岛屿目前滨海海洋生物多样性的主要因素是什么?(iii) 从海洋的角度来看,如何调和历史和生态生物地理学的差异?通过编译 11 个大西洋群岛/岛屿的水深图,以获得基于更新世海平面波动的潮间带区域变化的定量数据,从 15 万年前(ka)到现在,来解决这些问题。在对海平面变化敏感的模型框架内,我们讨论了影响海洋物种地理范围的主要因素;幼虫发育模式、扩散策略和地理范围之间的关系;物种形成的时间、幼虫发育模式、生态区化和地理范围之间的关系;表面温度和纬度对滨海海洋物种多样性的影响;海平面变化的影响及其对滨海海洋生物群的影响;岛屿海洋物种-面积关系;最后,岛屿个体发生及其相关的海底地形和海洋基质对潮间带生物群的物理影响。基于 SLS 动态模型,我们对热带、亚热带和温带火山海洋岛屿提出了一些预测,说明在冰川期和间冰期期间,移民、定植、原地物种形成、局部消失和灭绝的速度如何相互作用并影响岛屿周围的海洋生物多样性,从而为未来的理论检验提供了依据。