Yang Yongxin, Li Weijie, Tang Wenshui, Li Biao, Zhang Dengfeng
Central Research Institute of Building and Construction Co. Ltd, MCC, Beijing 100088, China.
School of Civil Engineering, Wuhan University, Wuhan 430072, China.
Materials (Basel). 2019 Jan 2;12(1):126. doi: 10.3390/ma12010126.
Current guidelines stipulate a sample size of five for a tensile coupon test of fiber reinforced polymer (FRP) composites based on the assumption of a normal distribution and a sample coefficient of variation (COV) of 0.058. Increasing studies have validated that a Weibull distribution is more appropriate in characterizing the tensile properties of FRP. However, few efforts have been devoted to sample size evaluation based on a Weibull distribution. It is not clear if the Weibull distribution will result in a more conservative sample size value. In addition, the COV of FRP's properties can vary from 5% to 15% in practice. In this study, the sample size based on a two-parameter Weibull distribution is compared with that based on a normal distribution. It is revealed that the Weibull distribution results in almost the same sample size as the normal distribution, which means that the sample size based on a normal distribution is applicable. For coupons with COVs varying from 0.05 to 0.20, the sample sizes range from less than 10 to more than 60. The use of only five coupons will lead to a prediction error of material property between 6.2% and 24.8% for COVs varying from 0.05 to 0.20.
当前指南规定,基于正态分布假设和0.058的样本变异系数(COV),纤维增强聚合物(FRP)复合材料拉伸试样试验的样本量为5。越来越多的研究证实,威布尔分布更适合用于表征FRP的拉伸性能。然而,基于威布尔分布的样本量评估工作却很少。尚不清楚威布尔分布是否会得出更保守的样本量值。此外,在实际应用中,FRP性能的COV可能在5%至15%之间变化。在本研究中,将基于双参数威布尔分布的样本量与基于正态分布的样本量进行了比较。结果表明,威布尔分布得出的样本量与正态分布几乎相同,这意味着基于正态分布的样本量是适用的。对于COV在0.05至0.20之间变化的试样,样本量范围从不到10到70以上。对于COV在0.05至0.20之间变化的情况,仅使用5个试样将导致材料性能预测误差在6.2%至24.8%之间。