Suppr超能文献

保卫细胞膜阴离子转运系统及其调控元件:一种控制胁迫诱导气孔关闭的复杂机制

Guard Cell Membrane Anion Transport Systems and Their Regulatory Components: An Elaborate Mechanism Controlling Stress-Induced Stomatal Closure.

作者信息

Saito Shunya, Uozumi Nobuyuki

机构信息

Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.

出版信息

Plants (Basel). 2019 Jan 3;8(1):9. doi: 10.3390/plants8010009.

Abstract

When plants are exposed to drastic environmental changes such as drought, salt or bacterial invasion, rapid stomatal movement confers tolerance to these stresses. This process involves a variety of guard cell expressed ion channels and their complex regulation network. Inward K⁺ channels mainly function in stomatal opening. On the other hand, guard cell anion channels play a crucial role in the closing of stomata, which is vital in terms of preventing water loss and bacterial entrance. Massive progress has been made on the research of these anion channels in the last decade. In this review, we focus on the function and regulation of guard cell anion channels. Starting from SLAC1, a main contributor of stomatal closure, members of SLAHs (SLAC1 homologues), AtNRTs (Nitrate transporters), AtALMTs (Aluminum-activated malate transporters), ABC transporters, AtCLCs (Chloride channels), DTXs (Detoxification efflux carriers), SULTRs (Sulfate transporters), and their regulator components are reviewed. These membrane transport systems are the keys to maintaining cellular ion homeostasis against fluctuating external circumstances.

摘要

当植物暴露于干旱、盐胁迫或细菌入侵等剧烈环境变化时,快速的气孔运动赋予植物对这些胁迫的耐受性。这一过程涉及多种保卫细胞表达的离子通道及其复杂的调控网络。内向钾离子通道主要在气孔开放中起作用。另一方面,保卫细胞阴离子通道在气孔关闭中起关键作用,这对于防止水分流失和细菌进入至关重要。在过去十年中,这些阴离子通道的研究取得了巨大进展。在本综述中,我们聚焦于保卫细胞阴离子通道的功能与调控。从气孔关闭的主要贡献者SLAC1开始,对SLAHs(SLAC1同源物)、AtNRTs(硝酸盐转运蛋白)、AtALMTs(铝激活苹果酸转运蛋白)、ABC转运蛋白、AtCLCs(氯离子通道)、DTXs(解毒外排载体)、SULTRs(硫酸盐转运蛋白)及其调控成分进行综述。这些膜转运系统是在外部环境波动时维持细胞离子稳态的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e92/6359458/2ebae2533715/plants-08-00009-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验