Laboratoire de Physique des Plasmas, École Polytechnique, F-91128 Palaiseau Cedex, France;
Space Sciences Laboratory, University of California, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2019 Jan 22;116(4):1185-1194. doi: 10.1073/pnas.1813913116. Epub 2019 Jan 4.
In a collisionless, magnetized plasma, particles may stream freely along magnetic field lines, leading to "phase mixing" of their distribution function and consequently, to smoothing out of any "compressive" fluctuations (of density, pressure, etc.). This rapid mixing underlies Landau damping of these fluctuations in a quiescent plasma-one of the most fundamental physical phenomena that makes plasma different from a conventional fluid. Nevertheless, broad power law spectra of compressive fluctuations are observed in turbulent astrophysical plasmas (most vividly, in the solar wind) under conditions conducive to strong Landau damping. Elsewhere in nature, such spectra are normally associated with fluid turbulence, where energy cannot be dissipated in the inertial-scale range and is, therefore, cascaded from large scales to small. By direct numerical simulations and theoretical arguments, it is shown here that turbulence of compressive fluctuations in collisionless plasmas strongly resembles one in a collisional fluid and does have broad power law spectra. This "fluidization" of collisionless plasmas occurs, because phase mixing is strongly suppressed on average by "stochastic echoes," arising due to nonlinear advection of the particle distribution by turbulent motions. Other than resolving the long-standing puzzle of observed compressive fluctuations in the solar wind, our results suggest a conceptual shift for understanding kinetic plasma turbulence generally: rather than being a system where Landau damping plays the role of dissipation, a collisionless plasma is effectively dissipationless, except at very small scales. The universality of "fluid" turbulence physics is thus reaffirmed even for a kinetic, collisionless system.
在无碰撞、磁化的等离子体中,粒子可以沿着磁场线自由流动,导致它们的分布函数发生“相混合”,从而使任何“压缩”波动(密度、压力等)变得平滑。这种快速混合是无碰撞等离子体中这些波动的朗道阻尼的基础——这是使等离子体不同于传统流体的最基本的物理现象之一。然而,在有利于强朗道阻尼的条件下,在湍动的天体物理等离子体(最明显的是太阳风中)中观察到宽幂律谱的压缩波动。在自然界的其他地方,这种谱通常与流体湍流有关,在流体湍流中,能量不能在惯性尺度范围内耗散,因此从大尺度向小尺度级联。通过直接数值模拟和理论论证,本文表明,无碰撞等离子体中压缩波动的湍流强烈类似于碰撞流体中的湍流,确实具有宽幂律谱。这种无碰撞等离子体的“流体化”发生是因为由于湍流运动对粒子分布的非线性平流,相混合平均受到“随机回波”的强烈抑制。除了解决太阳风中观察到的压缩波动的长期难题外,我们的结果还暗示了对理解一般动力学等离子体湍流的概念转变:无碰撞等离子体不是一个朗道阻尼起耗散作用的系统,而是除了非常小的尺度外,它是有效的无耗散系统。因此,即使对于动力学无碰撞系统,“流体”湍流物理学的普遍性也得到了再次确认。