Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.
Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
Eur Heart J. 2019 Apr 21;40(16):1268-1276. doi: 10.1093/eurheartj/ehy815.
Undetected atrial fibrillation (AF) is a major health concern. Blood biomarkers associated with AF could simplify patient selection for screening and further inform ongoing research towards stratified prevention and treatment of AF.
Forty common cardiovascular biomarkers were quantified in 638 consecutive patients referred to hospital [mean ± standard deviation age 70 ± 12 years, 398 (62%) male, 294 (46%) with AF] with known AF or ≥2 CHA2DS2-VASc risk factors. Paroxysmal or silent AF was ruled out by 7-day ECG monitoring. Logistic regression with forward selection and machine learning algorithms were used to determine clinical risk factors, imaging parameters, and biomarkers associated with AF. Atrial fibrillation was significantly associated with age [bootstrapped odds ratio (OR) per year = 1.060, 95% confidence interval (1.04-1.10); P = 0.001], male sex [OR = 2.022 (1.28-3.56); P = 0.008], body mass index [BMI, OR per unit = 1.060 (1.02-1.12); P = 0.003], elevated brain natriuretic peptide [BNP, OR per fold change = 1.293 (1.11-1.63); P = 0.002], elevated fibroblast growth factor-23 [FGF-23, OR = 1.667 (1.36-2.34); P = 0.001], and reduced TNF-related apoptosis-induced ligand-receptor 2 [TRAIL-R2, OR = 0.242 (0.14-0.32); P = 0.001], but not other biomarkers. Biomarkers improved the prediction of AF compared with clinical risk factors alone (net reclassification improvement = 0.178; P < 0.001). Both logistic regression and machine learning predicted AF well during validation [area under the receiver-operator curve = 0.684 (0.62-0.75) and 0.697 (0.63-0.76), respectively].
Three simple clinical risk factors (age, sex, and BMI) and two biomarkers (elevated BNP and elevated FGF-23) identify patients with AF. Further research is warranted to elucidate FGF-23 dependent mechanisms of AF.
未检测到的心房颤动(AF)是一个主要的健康问题。与 AF 相关的血液生物标志物可以简化对筛查的患者选择,并为 AF 的分层预防和治疗的进一步研究提供信息。
对 638 例连续就诊的患者[平均年龄 70 ± 12 岁,398 例(62%)为男性,294 例(46%)患有 AF]进行了 40 种常见心血管生物标志物的定量检测,这些患者已知患有 AF 或≥2 个 CHA2DS2-VASc 危险因素。通过 7 天心电图监测排除阵发性或无症状性 AF。使用向前选择和机器学习算法的逻辑回归确定与 AF 相关的临床危险因素、影像学参数和生物标志物。AF 与年龄[每增加 1 岁的优势比(OR)为 1.060,95%置信区间(1.04-1.10);P=0.001]、男性[OR=2.022(1.28-3.56);P=0.008]、体重指数[BMI,每增加一个单位的 OR 为 1.060(1.02-1.12);P=0.003]、升高的脑钠肽[BNP,每增加 1 倍的 OR 为 1.293(1.11-1.63);P=0.002]、升高的成纤维细胞生长因子-23[FGF-23,OR=1.667(1.36-2.34);P=0.001]和降低的肿瘤坏死因子相关凋亡诱导配体受体 2[TRAIL-R2,OR=0.242(0.14-0.32);P=0.001]显著相关,但与其他生物标志物无关。与单独的临床危险因素相比,生物标志物改善了 AF 的预测(净重新分类改善=0.178;P<0.001)。逻辑回归和机器学习在验证期间均能很好地预测 AF[受试者工作特征曲线下面积分别为 0.684(0.62-0.75)和 0.697(0.63-0.76)]。
三个简单的临床危险因素(年龄、性别和 BMI)和两个生物标志物(升高的 BNP 和升高的 FGF-23)可识别 AF 患者。需要进一步研究以阐明 AF 相关的 FGF-23 依赖性机制。