Nelson Joshua J M, Schelter Eric J
P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States.
Inorg Chem. 2019 Jan 22;58(2):979-990. doi: 10.1021/acs.inorgchem.8b01871. Epub 2019 Jan 7.
Inorganic materials are critical components of clean energy technology. For example, rare earths are key for the function of electric car batteries and in permanent magnets used in wind turbines, and palladium helps to reduce harmful exhaust in automotive three-way catalysts. Many of the critical elements for these materials are of low abundance in the earth's crust, found in few places globally, and/or require energy- and resource-intensive purification. By comparison, many of these elements are concentrated in waste electrical and electronic equipment, which represents an attractive secondary resource. Inorganic chemists are ideally positioned to develop new chemistry and greener processes that are more efficient and use less hazardous reagents to separate high-value metals from waste electronics. The purpose of this Viewpoint is to highlight recent discoveries in fundamental inorganic chemistry that can contribute to new recycling technologies for gold, lithium, palladium, germanium, and rare earths, especially using simple approaches in solid-liquid extraction. Such fundamental studies are expected to help close metal supply chain loops and create circular economies.
无机材料是清洁能源技术的关键组成部分。例如,稀土对于电动汽车电池的功能以及风力涡轮机中使用的永磁体至关重要,而钯有助于减少汽车三元催化剂中的有害废气排放。这些材料所需的许多关键元素在地壳中的丰度较低,在全球范围内分布稀少,和/或需要能源和资源密集型的提纯过程。相比之下,这些元素中的许多都集中在废弃电子电气设备中,这是一种有吸引力的二次资源。无机化学家处于理想的位置来开发新的化学方法和更环保的工艺,这些工艺更高效且使用危害较小的试剂从废弃电子产品中分离高价值金属。本观点文章的目的是强调基础无机化学领域的最新发现,这些发现有助于开发用于回收金、锂、钯、锗和稀土的新回收技术,特别是在固液萃取中使用简单方法。预计此类基础研究将有助于闭合金属供应链循环并创造循环经济。