Hans Berger Department of Neurology.
Integrated Research and Treatment Center-Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany, and.
J Neurosci. 2019 Feb 27;39(9):1755-1766. doi: 10.1523/JNEUROSCI.3303-17.2018. Epub 2019 Jan 7.
Stroke robustly stimulates adult neurogenesis in the hippocampal dentate gyrus. It is currently unknown whether this process induces beneficial or maladaptive effects, but morphological and behavioral studies have reported aberrant neurogenesis and impaired hippocampal-dependent memory following stroke. However, the intrinsic function and network incorporation of adult-born granule cells (ABGCs) after ischemia is unclear. Using patch-clamp electrophysiology, we evaluated doublecortin-positive (DCX) ABGCs as well as DCX dentate gyrus granule cells 2 weeks after a stroke or sham operation in DCXDsRed transgenic mice of either sex. The developmental status, intrinsic excitability, and synaptic excitability of ABGCs were accelerated following stroke, while dendritic morphology was not aberrant. Regression analysis revealed uncoupled development of intrinsic and network excitability, resulting in young, intrinsically hyperexcitable ABGCs receiving disproportionately large glutamatergic inputs. This aberrant functional maturation in the subgroup of ABGCs in the hippocampus may contribute to defective hippocampal function and increased seizure susceptibility following stroke. Stroke increases hippocampal neurogenesis but the functional consequences of the postlesional response is mostly unclear. Our findings provide novel evidence of aberrant functional maturation of newly generated neurons following stroke. We demonstrate that stroke not only causes an accelerated maturation of the intrinsic and synaptic parameters of doublecortin-positive, new granule cells in the hippocampus, but that this accelerated development does not follow physiological dynamics due to uncoupled intrinsic and synaptic maturation. Hyperexcitable immature neurons may contribute to disrupted network integration following stroke.
中风强烈刺激海马齿状回中的成年神经发生。目前尚不清楚这一过程是诱导有益还是适应不良的影响,但形态和行为研究报告中风后异常的神经发生和海马依赖性记忆受损。然而,缺血后成年产生的颗粒细胞(ABGC)的内在功能和网络整合尚不清楚。使用膜片钳电生理学,我们评估了双皮质素阳性(DCX)ABGC 以及 DCX 红转基因小鼠中风或假手术后 2 周的 DCX 齿状回颗粒细胞。ABGC 的发育状态、内在兴奋性和突触兴奋性在中风后加速,而树突形态没有异常。回归分析显示内在兴奋性和网络兴奋性的分离发育,导致内在过度兴奋的年轻 ABGC 接收不成比例的大量谷氨酸能输入。海马中 ABGC 亚群的这种异常功能成熟可能导致中风后海马功能缺陷和癫痫易感性增加。中风增加了海马神经发生,但损伤后反应的功能后果大多不清楚。我们的发现提供了中风后新生成神经元异常功能成熟的新证据。我们表明,中风不仅导致海马中双皮质素阳性、新颗粒细胞的内在和突触参数加速成熟,而且这种加速发育由于内在和突触成熟的分离而不遵循生理动态。过度兴奋的不成熟神经元可能导致中风后网络整合中断。