Suppr超能文献

单钨原子负载在 N 掺杂的石墨炔上作为一种在环境条件下高效电催化剂用于氮气固定。

Single tungsten atom supported on N-doped graphyne as a high-performance electrocatalyst for nitrogen fixation under ambient conditions.

机构信息

School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia.

出版信息

Phys Chem Chem Phys. 2019 Jan 21;21(3):1546-1551. doi: 10.1039/c8cp06978f. Epub 2019 Jan 8.

Abstract

Electrochemical reduction of dinitrogen molecules (N) to value-added ammonia by using renewable electricity under mild conditions is regarded as a sustainable and promising strategy for N fixation. However, the lack of efficient, robust and inexpensive electrocatalysts for such electrochemical reduction has prevented its wide application. Herein, we report a novel single-atom catalyst, i.e., a single tungsten (W) atom anchored on N-doped graphyne (W@N-doped graphyne) as a highly efficient and low-cost electrocatalyst for the N reduction reaction. The inert N[triple bond, length as m-dash]N triple bond can be sufficiently activated when an N molecule is adsorbed on the W atom. A single atom of W coordinated with one N atom (doping into an sp-hybridized carbon atom) exhibits the highest catalytic performance with ultra-low onset potential of 0.29 V for N reduction reactions. The 'distal mechanism' is identified as the most favourable catalytic pathway. Moreover, the improved electrical conductivity of W@N-doped graphyne compared to that of pristine graphyne can ensure better electron transfer efficiency during the reduction processes. Our study provides a novel electrocatalyst with excellent catalytic performance for electrochemical reduction of N to NH under ambient conditions.

摘要

电化学还原氮气分子(N)为增值氨,利用可再生电力在温和条件下进行,被认为是一种可持续且有前途的固氮策略。然而,缺乏高效、稳健和廉价的电催化剂来进行这种电化学还原,阻碍了其广泛应用。在此,我们报告了一种新型的单原子催化剂,即单钨(W)原子锚定在氮掺杂石墨炔(W@N-掺杂石墨炔)上,作为一种高效且低成本的电催化剂,用于氮气还原反应。当氮气分子吸附在 W 原子上时,惰性的 N≡N 三键可以被充分激活。一个 W 原子与一个 N 原子配位(掺杂到 sp 杂化的碳原子中)表现出最高的催化性能,氮气还原反应的起始电位超低,仅为 0.29V。确定了“远端机制”是最有利的催化途径。此外,与原始石墨炔相比,W@N-掺杂石墨炔的电导率得到了提高,这可以确保在还原过程中更好的电子转移效率。我们的研究为在环境条件下电化学还原 N 为 NH 提供了一种具有优异催化性能的新型电催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验