Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, and College of Chemistry and Chemical Engineering, Harbin Normal University , Harbin, 150025, China.
Department of Chemistry, University of Puerto Rico , Rio Piedras Campus, San Juan, PR 00931, United States.
J Am Chem Soc. 2017 Sep 13;139(36):12480-12487. doi: 10.1021/jacs.7b05213. Epub 2017 Aug 30.
The production of ammonia (NH) from molecular dinitrogen (N) under mild conditions is one of the most attractive and challenging processes in chemistry. Here by means of density functional theory (DFT) computations, we systematically investigated the potential of single transition metal atoms (Sc to Zn, Mo, Ru, Rh, Pd, and Ag) supported on the experimentally available defective boron nitride (TM-BN) monolayer with a boron monovacancy as a N fixation electrocatalyst. Our computations revealed that the single Mo atom supported by a defective BN nanosheet exhibits the highest catalytic activity for N fixation at room temperature through an enzymatic mechanism with a quite low overpotential of 0.19 V. The high spin-polarization, selective stabilization of NH* species, or destabilizing NH* species are responsible for the high activity of the Mo-embedded BN nanosheet for N fixation. This finding opens a new avenue of NH production by single-atom electrocatalysts under ambient conditions.
在温和条件下将氨分子(NH)从氮气分子(N)中合成是化学领域最具吸引力和挑战性的过程之一。在此,我们通过密度泛函理论(DFT)计算,系统地研究了单过渡金属原子(Sc 到 Zn、Mo、Ru、Rh、Pd 和 Ag)在具有硼空位的实验上可获得的氮化硼(TM-BN)单层上作为 N 固定电催化剂的潜力。我们的计算表明,在室温下,通过酶促机制,具有硼空位的 BN 纳米片上负载的单个 Mo 原子表现出最高的 N 固定催化活性,过电势相当低,为 0.19 V。高自旋极化、NH物种的选择性稳定或 NH物种的去稳定是 Mo 嵌入 BN 纳米片对 N 固定具有高活性的原因。这一发现为在环境条件下通过单原子电催化剂合成氨开辟了新途径。