Suppr超能文献

应用一步法核酸扩增检测总肿瘤负荷预测非前哨淋巴结状态的列线图:来自泰国的首次报告。

Nomogram to predict non-sentinel lymph node status using total tumor load determined by one-step nucleic acid amplification: first report from Thailand.

机构信息

Division of Head Neck and Breast Surgery, Department of Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Road Bangkoknoi, Bangkok, 10700, Thailand.

University College London, London, WC1E 6BT, UK.

出版信息

Breast Cancer. 2019 Jul;26(4):471-477. doi: 10.1007/s12282-019-00945-8. Epub 2019 Jan 7.

Abstract

BACKGROUND

Axillary staging is a significant prognostic factor often used to determine the treatment course for breast cancer. One-step nucleic acid amplification (OSNA) is now the most accepted method for intra-operative assessment of sentinel lymph nodes (SLN) as it can semi-quantitatively determine the tumor burden in these SLN. Axillary lymph node dissection (ALND) may be omitted in patients with limited disease in the axilla. The objective was to create nomogram for prediction of non-sentinel lymph node (NSLN) status using OSNA to avoid unnecessary ALND.

PATIENTS AND METHODS

Patients with invasive breast cancer T1-T3 and clinically negative axillary lymph nodes underwent SLN biopsy assessed by OSNA. The patients with positive SLN underwent ALND. Correlations between total tumor load (TTL), clinicopathological parameters, and NSLN status were analyzed by Chi square statistic and logistic regression. Model discrimination was evaluated using receiver-operating characteristic (ROC) analysis.

RESULTS

The total number of patients who underwent SLN biopsies was 278. There were 89 patients with positive SLN. NSLNs were positive in 40 patients. Larger tumor size, presence of lymphovascular invasion (LVI) and higher log TTL were independent factors that predicted positive NSLN. TTL can discriminate NSLN status with area under the ROC curve of 0.789 (95% CI 0.686-0.892). Two nomograms using different parameters obtained pre- and post-operatively can predict NSLN involvement with better area under the ROC curve (0.801, 95% CI 0.702-0.900 and 0.849, 95% CI 0.766-0.932, respectively).

CONCLUSIONS

Nomograms using results obtained via OSNA can predict NSLN status, as well as aid in deciding to omit the use of ALND.

摘要

背景

腋窝分期是乳腺癌的一个重要预后因素,常用于决定治疗方案。一步法核酸扩增(OSNA)是目前最被接受的术中评估前哨淋巴结(SLN)的方法,因为它可以半定量地确定这些 SLN 中的肿瘤负担。对于腋窝内疾病有限的患者,可能会省略腋窝淋巴结清扫术(ALND)。目的是创建使用 OSNA 预测非前哨淋巴结(NSLN)状态的列线图,以避免不必要的 ALND。

患者和方法

浸润性乳腺癌 T1-T3 且临床腋窝淋巴结阴性的患者接受了 SLN 活检,采用 OSNA 进行评估。SLN 阳性的患者行 ALND。采用卡方检验和逻辑回归分析总肿瘤负荷(TTL)与临床病理参数和 NSLN 状态的相关性。采用受试者工作特征(ROC)曲线分析评估模型的判别能力。

结果

共 278 例患者行 SLN 活检,其中 89 例 SLN 阳性,40 例 NSLN 阳性。更大的肿瘤大小、存在脉管侵犯(LVI)和更高的 log TTL 是预测 NSLN 阳性的独立因素。TTL 可以通过 ROC 曲线下面积为 0.789(95%CI 0.686-0.892)来区分 NSLN 状态。术前和术后使用不同参数获得的两个列线图可以更好地预测 NSLN 受累情况,ROC 曲线下面积分别为 0.801(95%CI 0.702-0.900)和 0.849(95%CI 0.766-0.932)。

结论

使用 OSNA 获得的结果构建的列线图可以预测 NSLN 状态,并有助于决定是否省略 ALND 的使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验