Suppr超能文献

一种新的预测 cT1-2 期前哨淋巴结阳性乳腺癌患者非前哨淋巴结转移的列线图。

A new prediction nomogram of non-sentinel lymph node metastasis in cT1-2 breast cancer patients with positive sentinel lymph nodes.

机构信息

Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China.

Department of Breast Surgery, Xingtai People's Hospital, Xingtai, 054000, China.

出版信息

Sci Rep. 2024 Apr 26;14(1):9596. doi: 10.1038/s41598-024-60198-0.

Abstract

We aimed to analyze the risk factors and construct a new nomogram to predict non-sentinel lymph node (NSLN) metastasis for cT1-2 breast cancer patients with positivity after sentinel lymph node biopsy (SLNB). A total of 830 breast cancer patients who underwent surgery between 2016 and 2021 at multi-center were included in the retrospective analysis. Patients were divided into training (n = 410), internal validation (n = 298), and external validation cohorts (n = 122) based on periods and centers. A nomogram-based prediction model for the risk of NSLN metastasis was constructed by incorporating independent predictors of NSLN metastasis identified through univariate and multivariate logistic regression analyses in the training cohort and then validated by validation cohorts. The multivariate logistic regression analysis revealed that the number of positive sentinel lymph nodes (SLNs) (P < 0.001), the proportion of positive SLNs (P = 0.029), lymph-vascular invasion (P = 0.029), perineural invasion (P = 0.023), and estrogen receptor (ER) status (P = 0.034) were independent risk factors for NSLN metastasis. The area under the receiver operating characteristics curve (AUC) value of this model was 0.730 (95% CI 0.676-0.785) for the training, 0.701 (95% CI 0.630-0.773) for internal validation, and 0.813 (95% CI 0.734-0.891) for external validation cohorts. Decision curve analysis also showed that the model could be effectively applied in clinical practice. The proposed nomogram estimated the likelihood of positive NSLNs and assisted the surgeon in deciding whether to perform further axillary lymph node dissection (ALND) and avoid non-essential ALND as well as postoperative complications.

摘要

我们旨在分析风险因素,并构建一个新的列线图,以预测前哨淋巴结活检 (SLNB) 后呈阳性的 cT1-2 期乳腺癌患者的非前哨淋巴结 (NSLN) 转移。回顾性分析了 2016 年至 2021 年期间在多中心接受手术的 830 例乳腺癌患者。根据时期和中心,患者被分为训练集(n=410)、内部验证集(n=298)和外部验证集(n=122)。通过对训练集中通过单因素和多因素逻辑回归分析确定的 NSLN 转移的独立预测因子进行整合,构建了一个基于列线图的 NSLN 转移风险预测模型,并通过验证集进行验证。多因素逻辑回归分析显示,前哨淋巴结 (SLN) 阳性数量(P<0.001)、SLN 阳性比例(P=0.029)、淋巴血管侵犯(P=0.029)、神经周围侵犯(P=0.023)和雌激素受体 (ER) 状态(P=0.034)是 NSLN 转移的独立危险因素。该模型的受试者工作特征曲线下面积(AUC)值在训练集、内部验证集和外部验证集分别为 0.730(95%CI 0.676-0.785)、0.701(95%CI 0.630-0.773)和 0.813(95%CI 0.734-0.891)。决策曲线分析也表明,该模型可在临床实践中有效应用。该列线图估计了 NSLN 阳性的可能性,并帮助外科医生决定是否进行进一步的腋窝淋巴结清扫术(ALND),避免不必要的 ALND 以及术后并发症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/010a/11053028/24a284b56562/41598_2024_60198_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验