Suppr超能文献

FeOOH 纳米立方体形貌的碳纳米带复合材料作为锂/氧电池正极材料的研究。

FeOOH Nanocubes Anchored on Carbon Ribbons for Use in Li/O Batteries.

机构信息

Siyuan Laboratory, Guangzhou Key Laboratory of, Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of, Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P.R. China.

Key Laboratory of Clean Chemical Technology, College of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China.

出版信息

Chemistry. 2019 Feb 26;25(12):3112-3118. doi: 10.1002/chem.201805551. Epub 2019 Feb 4.

Abstract

A composite of FeOOH nanocubes anchored on carbon ribbons has been synthesized and used as a cathode material for Li/O batteries. Fe ion-exchanged resin serves as a precursor for both FeOOH nanocubes and carbon ribbons, which are formed simultaneously. The as-prepared FeOOH cubes are proposed to have a core-shell structure, with FeOOH as the shell and Prussian blue as the core, based on information from XPS, TEM, and EDS mapping. As a cathode material for Li/O batteries, FeOOH delivers a specific capacity of 14816 mA h g with a cycling stability of 67 cycles over 400 h. The high performance is related to the low overpotential of the oxygen reduction/evolution reaction on FeOOH. The cube structure, the supporting carbon ribbons, and the -OOH moieties all contribute to the low overpotential. The discharge product Li O can be efficiently decomposed in the FeOOH cathode after a charging process, leading to higher cycling stability. Its high activity and stability make FeOOH a good candidate for use in non-aqueous Li/O batteries.

摘要

一种复合的 FeOOH 纳米立方体锚定在碳带上已经被合成,并被用作 Li/O 电池的阴极材料。Fe 离子交换树脂既是 FeOOH 纳米立方体的前体,也是碳带的前体,它们是同时形成的。基于 XPS、TEM 和 EDS 映射的信息,所制备的 FeOOH 立方体被提出具有核壳结构,其中 FeOOH 是壳,普鲁士蓝是核。作为 Li/O 电池的阴极材料,FeOOH 在 400 小时内经过 67 个循环,具有 14816 mA h g 的比容量和循环稳定性。这种高性能与 FeOOH 上氧还原/氧化反应的低过电位有关。立方体结构、支撑的碳带和 -OOH 部分都有助于降低过电位。在充电过程后,Li O 的放电产物可以在 FeOOH 阴极中有效分解,从而提高循环稳定性。其高活性和稳定性使得 FeOOH 成为用于非水电解质 Li/O 电池的良好候选材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验