Suppr超能文献

样本合并与炎症与自上而下蛋白质组学中神经退行性疾病生物标志物的错误选择有关:一项初步研究。

Sample Pooling and Inflammation Linked to the False Selection of Biomarkers for Neurodegenerative Diseases in Top-Down Proteomics: A Pilot Study.

作者信息

Molinari Nicolas, Roche Stéphane, Peoc'h Katell, Tiers Laurent, Séveno Martial, Hirtz Christophe, Lehmann Sylvain

机构信息

Department of Statistics, CHU de Montpellier, University of Montpellier, Montpellier, France.

INSERM, UMR 1251, Aix-Marseille Université, Marseille, France.

出版信息

Front Mol Neurosci. 2018 Dec 18;11:477. doi: 10.3389/fnmol.2018.00477. eCollection 2018.

Abstract

Proteomic technologies have been recently adapted to the new field of clinical proteomics. The origin of errors and biases has been well-identified in the pre-analytical steps, leading to the measurement of clinical analytes. One possible source of inadequacy in clinical proteomics is linked to sample pooling. This practice is usually related to low sample availability, variability, experiment time/cost. In this study, we first asked whether sample pooling in top-down proteomics is suitable to obtain a relevant biological average. Our second objective was to identify inflammatory biomarkers of outlier samples in our population of Creutzfeldt-Jakob disease patients. Our results demonstrated that, in a proteomics study, sample pooling as well as the inflammation status was an important source of errors: missed detection of biomarkers and false identification of others. Pooled samples were not equivalent to the average of biological values. In addition, this procedure reduced the statistical value of the identified biomarkers due to a stabilization of their standard deviation and rendered outlier samples difficult to detect. We identified serum amyloid A as a candidate biomarker of outlier samples. The presence of this protein, which could be explained by inflammatory processes, induced major modifications in the sample profiles.

摘要

蛋白质组学技术最近已应用于临床蛋白质组学这一新领域。在导致临床分析物测量的分析前步骤中,误差和偏差的来源已得到明确识别。临床蛋白质组学中一个可能的不足之处与样本合并有关。这种做法通常与样本可用性低、变异性、实验时间/成本有关。在本研究中,我们首先探讨自上而下蛋白质组学中的样本合并是否适合获得相关的生物学平均值。我们的第二个目标是在我们的克雅氏病患者群体中识别异常样本的炎症生物标志物。我们的结果表明,在蛋白质组学研究中,样本合并以及炎症状态是误差的一个重要来源:生物标志物漏检和其他生物标志物的错误识别。合并样本并不等同于生物学值的平均值。此外,由于生物标志物标准差的稳定,该程序降低了已识别生物标志物的统计价值,并使异常样本难以检测。我们将血清淀粉样蛋白A鉴定为异常样本的候选生物标志物。这种蛋白质的存在可能由炎症过程解释,它会引起样本谱的重大变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b3b/6305369/a73ff6c97136/fnmol-11-00477-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验