Department of Chemistry , Seoul National University , Seoul 08826 , South Korea.
Department of Chemistry , Kyungpook National University , Daegu 702-701 , South Korea.
J Chem Theory Comput. 2019 Feb 12;15(2):882-891. doi: 10.1021/acs.jctc.8b01049. Epub 2019 Jan 24.
Fast overlap integral algorithms for the spin-flip time-dependent density functional theory (SF-TDDFT) and the linear response (LR)-TDDFT were proposed on the basis of determinant factorization (DF) and the truncated Leibnitz formula (TLF). These in turn allow efficient computation of nonadiabatic coupling terms (NACTs) in nonadiabatic molecular dynamics simulations. The TLF(0), TLF(1), and TLF(2) were proposed according to the truncation order. The DF and TLF(1) or TLF(2) provide a four order combined performance improvement to the conventional method without introducing additional errors in the finite difference approximation. On the other hand, the DF and TLF(0) provide a five orders performance improvement making it the most efficient algorithm for NACT calculations so far with errors slightly larger than those of the finite difference approximation. The same techniques can be also applicable to other determinantal wave functions.
快速重叠积分算法的自旋翻转含时密度泛函理论 (SF-TDDFT) 和线性响应 (LR)-TDDFT 提出了基于行列式因式分解 (DF) 和截断莱布尼茨公式 (TLF)。反过来,这些允许在非绝热分子动力学模拟中有效地计算非绝热耦合项 (NACTs)。TLF(0)、TLF(1)和 TLF(2)是根据截断阶次提出的。DF 和 TLF(1)或 TLF(2)提供了一个四阶的组合性能改进,而在有限差分逼近中没有引入额外的误差。另一方面,DF 和 TLF(0)提供了五阶的性能改进,使其成为迄今为止最有效的 NACT 计算算法,误差略大于有限差分逼近的误差。同样的技术也可以应用于其他行列式波函数。