Department of Physics, University of Helsinki, Helsinki, Finland.
Max Planck Institute for Solar System Research, Göttingen, Germany.
PLoS One. 2019 Jan 8;14(1):e0210155. doi: 10.1371/journal.pone.0210155. eCollection 2019.
We present a numerical method for solving electromagnetic scattering by dense discrete random media entitled radiative transfer with reciprocal transactions (R2T2). The R2T2 is a combination of the Monte Carlo radiative-transfer, coherent-backscattering, and superposition T-matrix methods. The applicability of the radiative transfer is extended to dense random media by incorporating incoherent volume elements containing multiple particles. We analyze the R2T2 by comparing the results with the asymptotically exact superposition T-matrix method, and show that the R2T2 removes the caveats of radiative-transfer methods by comparing it to the RT-CB. We study various implementation choices that result in an accurate and efficient numerical algorithm. In particular, we focus on the properties of the incoherent volume elements and their effects on the final solution.
我们提出了一种用于求解密集离散随机介质中电磁散射的数值方法,称为具有互易交易的辐射转移(R2T2)。R2T2 是蒙特卡罗辐射转移、相干后向散射和叠加 T 矩阵方法的组合。通过合并包含多个粒子的非相干体积元,将辐射转移的适用性扩展到密集的随机介质。我们通过将结果与渐近精确的叠加 T 矩阵方法进行比较来分析 R2T2,并通过与 RT-CB 进行比较来表明 R2T2 通过消除辐射转移方法的注意事项。我们研究了各种实现选择,这些选择导致了准确有效的数值算法。特别是,我们专注于非相干体积元的性质及其对最终解决方案的影响。