Department of Computer Science and Engineering-Interdepartmental Centre for Industrial ICT Research (CIRI ICT), University of Bologna, 40126 Bologna, Italy.
Laboratoire de Chimie Physique-Matière et Rayonnement (LCPMR), UMR 7614, CNRS, Sorbonne Université, 75005 Paris, France.
Sensors (Basel). 2023 Feb 22;23(5):2419. doi: 10.3390/s23052419.
Hyperspectral imaging (HSI) has become widely used in cultural heritage (CH). This very efficient method for artwork analysis is connected with the generation of large amounts of spectral data. The effective processing of such heavy spectral datasets remains an active research area. Along with the firmly established statistical and multivariate analysis methods, neural networks (NNs) represent a promising alternative in the field of CH. Over the last five years, the application of NNs for pigment identification and classification based on HSI datasets has drastically expanded due to the flexibility of the types of data they can process, and their superior ability to extract structures contained in the raw spectral data. This review provides an exhaustive analysis of the literature related to NNs applied for HSI data in the CH field. We outline the existing data processing workflows and propose a comprehensive comparison of the applications and limitations of the various input dataset preparation methods and NN architectures. By leveraging NN strategies in CH, the paper contributes to a wider and more systematic application of this novel data analysis method.
高光谱成像(HSI)在文化遗产(CH)领域得到了广泛应用。这种非常有效的艺术品分析方法与大量光谱数据的产生有关。对这种大量光谱数据集的有效处理仍然是一个活跃的研究领域。除了已确立的统计和多元分析方法外,神经网络(NN)在 CH 领域也代表了一种很有前途的选择。在过去的五年中,由于神经网络可以处理的类型的数据的灵活性,以及它们从原始光谱数据中提取结构的卓越能力,基于 HSI 数据集的颜料识别和分类的神经网络应用得到了极大的扩展。本综述对应用于 CH 领域 HSI 数据的神经网络相关文献进行了详尽的分析。我们概述了现有的数据处理工作流程,并提出了对各种输入数据集准备方法和 NN 架构的应用和局限性的全面比较。通过在 CH 中利用 NN 策略,本文为更广泛和更系统地应用这种新的数据分析方法做出了贡献。