Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
Department of Physics, Humboldt-Universitat zu Berlin, Berlin, Germany.
J Clin Sleep Med. 2019 Jan 15;15(1):23-32. doi: 10.5664/jcsm.7562.
Obstructive sleep apnea (OSA) is common in commercial motor vehicle operators (CMVOs); however, polysomnography (PSG), the gold-standard diagnostic test, is expensive and inconvenient for screening. OSA is associated with changes in heart rate and voltage on electrocardiography (EKG). We evaluated the utility of EKG parameters in identifying CMVOs at greater risk for sleepiness-related crashes (apnea-hypopnea index [AHI] ≥ 30 events/h).
In this prospective study of CMVOs, we performed EKGs with concurrent PSG, and calculated the respiratory power index (RPI) on EKG, a surrogate for AHI calculated from PSG. We evaluated the utility of two-stage predictive models using simple clinical measures (age, body mass index [BMI], neck circumference, Epworth Sleepiness Scale score, and the Multi-Variable Apnea Prediction [MVAP] score) in the first stage, followed by RPI in a subset as the second-stage. We assessed area under the receiver operating characteristic curve (AUC), sensitivity, and negative posttest probability (NPTP) for this two-stage approach and for RPI alone.
The best-performing model used the MVAP, which combines BMI, age, and sex with three OSA symptoms, in the first stage, followed by RPI in the second. The model yielded an estimated (95% confidence interval) AUC of 0.883 (0.767-0.924), sensitivity of 0.917 (0.706-0.962), and NPTP of 0.034 (0.015-0.133). Predictive characteristics were similar using a model with only BMI as the first-stage screen.
A two-stage model that combines BMI or the MVAP score in the first stage, with EKG in the second, had robust discriminatory power to identify severe OSA in CMVOs.
阻塞性睡眠呼吸暂停(OSA)在商业机动车驾驶员(CMVO)中很常见;然而,多导睡眠图(PSG)是金标准诊断测试,对于筛查来说既昂贵又不方便。OSA 与心电图(EKG)中心率和电压变化有关。我们评估了 EKG 参数在识别更易发生与嗜睡相关的撞车事故(呼吸暂停-低通气指数[AHI]≥30 次/小时)的 CMVO 中的作用。
在这项对 CMVO 的前瞻性研究中,我们在进行 PSG 的同时进行了 EKG,并计算了 EKG 上的呼吸动力指数(RPI),这是从 PSG 计算得出的 AHI 的替代指标。我们评估了使用简单临床指标(年龄、体重指数[BMI]、颈围、嗜睡量表评分和多变量呼吸暂停预测[MVAP]评分)在第一阶段,然后在亚组中使用 RPI 在第二阶段的两阶段预测模型的效用。我们评估了这种两阶段方法和单独使用 RPI 的曲线下接收者操作特征面积(AUC)、敏感性和阴性后验概率(NPTP)。
表现最好的模型在第一阶段使用了 MVAP,该模型将 BMI、年龄和性别与三种 OSA 症状相结合,然后在第二阶段使用 RPI。该模型的 AUC 估计值(95%置信区间)为 0.883(0.767-0.924),敏感性为 0.917(0.706-0.962),NPTP 为 0.034(0.015-0.133)。仅使用 BMI 作为第一阶段筛选的模型具有相似的预测特征。
在第一阶段结合 BMI 或 MVAP 评分,第二阶段结合 EKG 的两阶段模型具有识别 CMVO 中严重 OSA 的强大判别能力。