Suppr超能文献

在患有隐性疾病的病例对照研究中,基因 - 环境相互作用偏差的一种简单近似方法。

A simple approximation to the bias of gene-environment interactions in case-control studies with silent disease.

作者信息

Lobach Iryna, Sampson Joshua, Lobach Siarhei, Alekseyenko Alexander, Piryatinska Alexandra, He Tao, Zhang Li

机构信息

Department of Epidemiology and Biostatistics, University of California, San Francisco, California.

Biostatistics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.

出版信息

Genet Epidemiol. 2019 Apr;43(3):292-299. doi: 10.1002/gepi.22186. Epub 2019 Jan 8.

Abstract

One of the most important research areas in case-control Genome-Wide Association Studies is to determine how the effect of a genotype varies across the environment or to measure the gene-environment interaction (G × E). We consider the scenario when some of the "healthy" controls actually have the disease and when the frequency of these latent cases varies by the environmental variable of interest. In this scenario, performing logistic regression with the clinically diagnosed disease status as an outcome variable and will result in biased estimates of G × E interaction. Here, we derive a general theoretical approximation to the bias in the estimates of the G × E interaction and show, through extensive simulation, that this approximation is accurate in finite samples. Moreover, we apply this approximation to evaluate the bias in the effect estimates of the genetic variants related to mitochondrial proteins a large-scale prostate cancer study.

摘要

病例对照全基因组关联研究中最重要的研究领域之一是确定基因型的效应如何随环境变化,或衡量基因-环境相互作用(G×E)。我们考虑这样一种情况:一些“健康”对照实际上患有该疾病,并且这些潜在病例的频率因感兴趣的环境变量而异。在这种情况下,以临床诊断的疾病状态作为结果变量进行逻辑回归,将导致对G×E相互作用的估计产生偏差。在此,我们推导出G×E相互作用估计偏差的一般理论近似值,并通过广泛的模拟表明,这种近似值在有限样本中是准确的。此外,我们应用这种近似值来评估一项大规模前列腺癌研究中与线粒体蛋白相关的基因变异效应估计值的偏差。

相似文献

1
A simple approximation to the bias of gene-environment interactions in case-control studies with silent disease.
Genet Epidemiol. 2019 Apr;43(3):292-299. doi: 10.1002/gepi.22186. Epub 2019 Jan 8.
2
Gene-environment interactions in case-control studies with silent disease.
Genet Epidemiol. 2018 Sep;42(6):551-558. doi: 10.1002/gepi.22135. Epub 2018 Jun 13.
3
Bias in parameter estimates due to omitting gene-environment interaction terms in case-control studies.
Genet Epidemiol. 2018 Dec;42(8):838-845. doi: 10.1002/gepi.22154. Epub 2018 Oct 9.
4
A simple approximation to bias in the genetic effect estimates when multiple disease states share a clinical diagnosis.
Genet Epidemiol. 2019 Jul;43(5):522-531. doi: 10.1002/gepi.22201. Epub 2019 Mar 19.
5
A Simple Approximation to Bias in Gene-Environment Interaction Estimates When a Case Might Not Be the Case.
Front Genet. 2019 Oct 9;10:886. doi: 10.3389/fgene.2019.00886. eCollection 2019.
7
Case-control studies of gene-environment interactions. When a case might not be the case.
PLoS One. 2018 Aug 22;13(8):e0201140. doi: 10.1371/journal.pone.0201140. eCollection 2018.
9
Deciphering Genome Environment Wide Interactions Using Exposed Subjects Only.
Genet Epidemiol. 2015 Jul;39(5):334-46. doi: 10.1002/gepi.21890. Epub 2015 Feb 18.
10
Test for interactions between a genetic marker set and environment in generalized linear models.
Biostatistics. 2013 Sep;14(4):667-81. doi: 10.1093/biostatistics/kxt006. Epub 2013 Mar 5.

本文引用的文献

1
Bias in parameter estimates due to omitting gene-environment interaction terms in case-control studies.
Genet Epidemiol. 2018 Dec;42(8):838-845. doi: 10.1002/gepi.22154. Epub 2018 Oct 9.
2
Gene-environment interactions in case-control studies with silent disease.
Genet Epidemiol. 2018 Sep;42(6):551-558. doi: 10.1002/gepi.22135. Epub 2018 Jun 13.
3
Lessons Learned From Past Gene-Environment Interaction Successes.
Am J Epidemiol. 2017 Oct 1;186(7):778-786. doi: 10.1093/aje/kwx230.
6
Non-alcoholic fatty liver disease: The diagnosis and management.
World J Hepatol. 2015 Apr 28;7(6):846-58. doi: 10.4254/wjh.v7.i6.846.
8
Gene × environment interaction studies have not properly controlled for potential confounders: the problem and the (simple) solution.
Biol Psychiatry. 2014 Jan 1;75(1):18-24. doi: 10.1016/j.biopsych.2013.09.006. Epub 2013 Oct 15.
9
MENDELIAN PROPORTIONS IN A MIXED POPULATION.
Science. 1908 Jul 10;28(706):49-50. doi: 10.1126/science.28.706.49.
10
Genome-wide association study of prostate cancer identifies a second risk locus at 8q24.
Nat Genet. 2007 May;39(5):645-9. doi: 10.1038/ng2022. Epub 2007 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验