Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kgs. Lyngby, Denmark.
Phys Chem Chem Phys. 2019 Jan 23;21(4):1717-1723. doi: 10.1039/c8cp05985c.
The most prominent spectroscopic observable for the hydrogen bonding between individual molecules in liquid water is the broad absorption band detected in the spectral region between 300 and 900 cm-1. The present work demonstrates how the associated large-amplitude out-of-plane OH librational motion of H2O molecules also directly reflects the microsolvation of organic compounds. This highly localized OH librational motion of the first solvating H2O molecule causes a significant change of dipole moment and gives rise to a strong characteristic band in the far-infrared spectral region, which is correlated quantitatively with the complexation energy. The out-of-plane OH librational band origins ranging from 324.5 to 658.9 cm-1 have been assigned experimentally for a series of four binary hydrogen-bonded H2O complexes embedded in solid neon involving S-, O- and N-containing compounds with increasing hydrogen bond acceptor capability. The hydrogen bond energies for altogether eight binary H2O complexes relative to the experimental value of 13.2 ± 0.12 kJ mol-1 for the prototypical (H2O)2 system [Rocher-Casterline et al., J. Chem. Phys., 2011, 134, 211101] are revealed directly by these far-infrared spectroscopic observables. The far-infrared spectral signatures are able to capture even minor differences in the hydrogen bond acceptor capability of O atoms with slightly different alkyl substituents in the order H-O-C(CH3)3 > CH3-O-CH3 > H-O-CH(CH3)2 > H-O-CH2CH3.
在液态水中,单个分子氢键的最突出的光谱可观测性是在 300 到 900 cm-1 光谱区域检测到的宽吸收带。本工作表明,H2O 分子的相关大振幅面外 OH 摆动运动也直接反映了有机化合物的微溶剂化。第一个溶剂化 H2O 分子的这种高度局域的 OH 摆动运动导致偶极矩发生显著变化,并在远红外光谱区域产生强特征带,该特征带与络合能定量相关。实验上已经为一系列嵌入在固体氖中的四个二元氢键合 H2O 复合物分配了实验上的面外 OH 摆动带起源,这些复合物涉及具有增加的氢键受体能力的 S、O 和 N 化合物。总共八个二元 H2O 复合物的氢键能相对于(H2O)2 体系的实验值 13.2 ± 0.12 kJ mol-1 [Rocher-Casterline 等人,J. Chem. Phys.,2011,134,211101] 直接通过这些远红外光谱可观测性揭示。远红外光谱特征能够捕捉到具有略微不同烷基取代基的 O 原子的氢键受体能力的微小差异,其顺序为 H-O-C(CH3)3 > CH3-O-CH3 > H-O-CH(CH3)2 > H-O-CH2CH3。