Mihrin Dmytro, Feilberg Karen Louise, Larsen René Wugt
Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kongens Lyngby, Denmark.
DTU Offshore, Technical University of Denmark, Elektrovej 375, 2800 Kongens Lyngby, Denmark.
Molecules. 2024 Jun 25;29(13):3012. doi: 10.3390/molecules29133012.
The self-association mechanisms of phenol have represented long-standing challenges to quantum chemical methodologies owing to the competition between strongly directional intermolecular hydrogen bonding, weaker non-directional London dispersion forces and C-H⋯π interactions between the aromatic rings. The present work explores these subtle self-association mechanisms of relevance for biological molecular recognition processes via spectroscopic observations of large-amplitude hydrogen bond librational modes of phenol cluster molecules embedded in inert neon "quantum" matrices complemented by domain-based local pair natural orbital-coupled cluster DLPNO-CCSD(T) theory. The spectral signatures confirm a primarily intermolecular O-H⋯H hydrogen-bonded structure of the phenol dimer strengthened further by cooperative contributions from inter-ring London dispersion forces as supported by DLPNO-based local energy decomposition (LED) predictions. In the same way, the hydrogen bond librational bands observed for the trimeric cluster molecule confirm a pseudo- symmetric cyclic cooperative hydrogen-bonded barrel-like potential energy minimum structure. This structure is vastly different from the sterically favored "chair" conformations observed for aliphatic alcohol cluster molecules of the same size owing to the additional stabilizing London dispersion forces and C-H⋯π interactions between the aromatic rings. The hydrogen bond librational transition observed for the phenol monohydrate finally confirms that phenol acts as a hydrogen bond donor to water in contrast to the hydrogen bond acceptor role observed for aliphatic alcohols.
由于强方向性分子间氢键、较弱的非方向性伦敦色散力以及芳香环之间的C-H⋯π相互作用之间的竞争,苯酚的自缔合机制长期以来一直是量子化学方法面临的挑战。本研究通过对嵌入惰性氖“量子”基质中的苯酚簇分子的大幅度氢键振动模式进行光谱观测,并辅以基于域的局部对自然轨道耦合簇DLPNO-CCSD(T)理论,探索了与生物分子识别过程相关的这些微妙的自缔合机制。光谱特征证实了苯酚二聚体主要是分子间O-H⋯H氢键结构,如基于DLPNO的局部能量分解(LED)预测所支持的,环间伦敦色散力的协同作用进一步加强了这种结构。同样,三聚体簇分子观察到的氢键振动带证实了一种准对称环状协同氢键桶状势能最低结构。由于芳香环之间额外的稳定伦敦色散力和C-H⋯π相互作用,这种结构与相同大小的脂肪族醇簇分子所观察到的空间上有利的“椅式”构象有很大不同。苯酚一水合物观察到的氢键振动跃迁最终证实,与脂肪族醇所观察到的氢键受体作用相反,苯酚作为水的氢键供体。