Suppr超能文献

机器学习方法能否准确且易于使用地预测膝关节或髋关节置换术后 30 天的并发症和死亡率?

Can Machine Learning Methods Produce Accurate and Easy-to-use Prediction Models of 30-day Complications and Mortality After Knee or Hip Arthroplasty?

机构信息

A. H. S. Harris, T. Bowe, N. J. Giori Center for Innovation to Implementation, VA Palo Alto Healthcare System, Palo Alto, CA, USA A. C. Kuo San Francisco Veterans Affairs Medical Center, University of California, San Francisco, CA, USA A H. S. Harris, Y. Weng, A. W. Trickey Stanford-Surgical Policy Improvement Research and Education Center, Stanford, CA, USA N. J. Giori Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

Clin Orthop Relat Res. 2019 Feb;477(2):452-460. doi: 10.1097/CORR.0000000000000601.

Abstract

BACKGROUND

Existing universal and procedure-specific surgical risk prediction models of death and major complications after elective total joint arthroplasty (TJA) have limitations including poor transparency, poor to modest accuracy, and insufficient validation to establish performance across diverse settings. Thus, the need remains for accurate and validated prediction models for use in preoperative management, informed consent, shared decision-making, and risk adjustment for reimbursement.

QUESTIONS/PURPOSES: The purpose of this study was to use machine learning methods and large national databases to develop and validate (both internally and externally) parsimonious risk-prediction models for mortality and complications after TJA.

METHODS

Preoperative demographic and clinical variables from all 107,792 nonemergent primary THAs and TKAs in the 2013 to 2014 American College of Surgeons-National Surgical Quality Improvement Program (ACS-NSQIP) were evaluated as predictors of 30-day death and major complications. The NSQIP database was chosen for its high-quality data on important outcomes and rich characterization of preoperative demographic and clinical predictors for demographically and geographically diverse patients. Least absolute shrinkage and selection operator (LASSO) regression, a type of machine learning that optimizes accuracy and parsimony, was used for model development. Tenfold validation was used to produce C-statistics, a measure of how well models discriminate patients who experience an outcome from those who do not. External validation, which evaluates the generalizability of the models to new data sources and patient groups, was accomplished using data from the Veterans Affairs Surgical Quality Improvement Program (VASQIP). Models previously developed from VASQIP data were also externally validated using NSQIP data to examine the generalizability of their performance with a different group of patients outside the VASQIP context.

RESULTS

The models, developed using LASSO regression with diverse clinical (for example, American Society of Anesthesiologists classification, comorbidities) and demographic (for example, age, gender) inputs, had good accuracy in terms of discriminating the likelihood a patient would experience, within 30 days of arthroplasty, a renal complication (C-statistic, 0.78; 95% confidence interval [CI], 0.76-0.80), death (0.73; 95% CI, 0.70-0.76), or a cardiac complication (0.73; 95% CI, 0.71-0.75) from one who would not. By contrast, the models demonstrated poor accuracy for venous thromboembolism (C-statistic, 0.61; 95% CI, 0.60-0.62) and any complication (C-statistic, 0.64; 95% CI, 0.63-0.65). External validation of the NSQIP- derived models using VASQIP data found them to be robust in terms of predictions about mortality and cardiac complications, but not for predicting renal complications. Models previously developed with VASQIP data had poor accuracy when externally validated with NSQIP data, suggesting they should not be used outside the context of the Veterans Health Administration.

CONCLUSIONS

Moderately accurate predictive models of 30-day mortality and cardiac complications after elective primary TJA were developed as well as internally and externally validated. To our knowledge, these are the most accurate and rigorously validated TJA-specific prediction models currently available (http://med.stanford.edu/s-spire/Resources/clinical-tools-.html). Methods to improve these models, including the addition of nonstandard inputs such as natural language processing of preoperative clinical progress notes or radiographs, should be pursued as should the development and validation of models to predict longer term improvements in pain and function.

LEVEL OF EVIDENCE

Level III, diagnostic study.

摘要

背景

现有的全关节置换术(TJA)和特定手术风险预测模型在预测术后 30 天死亡和主要并发症方面存在局限性,包括不透明、准确性差、验证不足,无法在不同环境下确定其性能。因此,仍然需要准确且经过验证的预测模型,以便在术前管理、知情同意、共同决策以及为报销进行风险调整中使用。

问题/目的:本研究旨在使用机器学习方法和大型国家数据库,为 TJA 后死亡率和并发症开发并验证(内部和外部)简洁的风险预测模型。

方法

评估 2013 年至 2014 年美国外科医师学会-国家手术质量改进计划(ACS-NSQIP)中所有 107792 例非急诊初次全髋关节置换术和全膝关节置换术患者的术前人口统计学和临床变量,以预测 30 天内死亡和主要并发症。选择 NSQIP 数据库是因为它对重要结局有高质量的数据,并且对术前人口统计学和临床预测因子有丰富的描述,适用于不同人群和地理位置的患者。最小绝对收缩和选择算子(LASSO)回归是一种优化准确性和简洁性的机器学习方法,用于模型开发。使用 10 倍验证产生 C 统计量,这是衡量模型区分经历结局的患者和不经历结局的患者的能力的指标。外部验证通过使用退伍军人事务部手术质量改进计划(VASQIP)的数据来评估模型在新数据源和患者群体中的泛化能力。之前使用 VASQIP 数据开发的模型也使用 NSQIP 数据进行了外部验证,以检查其在不同患者群体中的性能的通用性。

结果

使用具有多样化临床(例如,美国麻醉师协会分类、合并症)和人口统计学(例如,年龄、性别)输入的 LASSO 回归开发的模型在区分患者在关节置换后 30 天内经历肾脏并发症(C 统计量,0.78;95%置信区间[CI],0.76-0.80)、死亡(0.73;95%CI,0.70-0.76)或心脏并发症(0.73;95%CI,0.71-0.75)的可能性方面具有良好的准确性。相比之下,这些模型对静脉血栓栓塞(C 统计量,0.61;95%CI,0.60-0.62)和任何并发症(C 统计量,0.64;95%CI,0.63-0.65)的准确性较低。使用 VASQIP 数据对 NSQIP 衍生模型进行外部验证发现,它们在预测死亡率和心脏并发症方面是可靠的,但在预测肾脏并发症方面不可靠。之前使用 VASQIP 数据开发的模型在使用 NSQIP 数据进行外部验证时准确性较差,表明它们不应在退伍军人健康管理局的背景之外使用。

结论

我们开发了中等准确性的预测模型,用于预测择期初次 TJA 后 30 天的死亡率和心脏并发症,并进行了内部和外部验证。据我们所知,这些是目前可用的最准确和最严格验证的 TJA 特异性预测模型(http://med.stanford.edu/s-spire/Resources/clinical-tools-.html)。应该寻求改进这些模型的方法,包括添加非标准输入,例如术前临床进展记录或 X 光片的自然语言处理,以及开发和验证预测疼痛和功能长期改善的模型。

证据水平

三级,诊断研究。

相似文献

引用本文的文献

6
7
Artificial intelligence in planned orthopaedic care.计划中的骨科护理中的人工智能
SICOT J. 2024;10:49. doi: 10.1051/sicotj/2024044. Epub 2024 Nov 21.

本文引用的文献

8
Risk Prediction Tools for Hip and Knee Arthroplasty.髋关节和膝关节置换术的风险预测工具
J Am Acad Orthop Surg. 2016 Jan;24(1):19-27. doi: 10.5435/JAAOS-D-15-00072.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验