Suppr超能文献

利用电子健康记录,采用数据驱动方法制定全关节置换术中假体周围关节感染风险评分

Data-Driven Approach to Development of a Risk Score for Periprosthetic Joint Infections in Total Joint Arthroplasty Using Electronic Health Records.

作者信息

Maradit Kremers Hilal, Wyles Cody C, Slusser Joshua P, O'Byrne Thomas J, Sagheb Elham, Lewallen David G, Berry Daniel J, Osmon Douglas R, Sohn Sunghwan, Kremers Walter K

机构信息

Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota; Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.

Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.

出版信息

J Arthroplasty. 2025 May;40(5):1308-1316.e13. doi: 10.1016/j.arth.2024.10.129. Epub 2024 Nov 1.

Abstract

BACKGROUND

Periprosthetic joint infection (PJI) is an uncommon, but serious complication in total joint arthroplasty. Personalized risk prediction and risk factor management may allow better preoperative assessment and improved outcomes. We evaluated different data-driven approaches to develop surgery-specific PJI prediction models using large-scale data from the electronic health records (EHRs).

METHODS

A large institutional arthroplasty registry was leveraged to collect data from 58,574 procedures of 41,844 patients who underwent at least one primary and/or revision hip and/or knee arthroplasty between 2000 and 2019. The registry dataset was augmented with additional clinical, procedural, and laboratory data from the EHRs for more than 100 potential predictor variables. The main outcome was PJI within the first year after surgery. We implemented both traditional and machine learning methods for model development (lasso regression, relaxed lasso regression, ridge regression, random forest, stepwise regression, extreme gradient boosting, neural network) and used 10-fold cross-validation to calculate measures of model performance in terms of discrimination (c-statistic) and calibration.

RESULTS

All models discriminated similarly in predicting PJI risk, with negligible differences of less than 0.08 between the best- and worst-performing models. The relaxed and fully relaxed lasso models using the Cox model structure outperformed the other models with concordances of 0.787 in primary hip arthroplasty and 0.722 in revision hip arthroplasty, with the number of predictors ranging from nine to 41. The concordances with the relaxed lasso models were 0.681 in primary and 0.699 in revision knee arthroplasty, with a higher number of predictors in the models. Predictors included in the models varied substantially across the four surgical groups.

CONCLUSIONS

The incorporation of additional data from the EHRs offers limited improvement in PJI risk stratification. Furthermore, improvement in PJI risk prediction was modest with the machine learning approaches and may not justify the added complexity.

摘要

背景

人工关节周围感染(PJI)是全关节置换术中一种不常见但严重的并发症。个性化风险预测和风险因素管理可能有助于更好的术前评估并改善预后。我们使用电子健康记录(EHR)中的大规模数据,评估了不同的数据驱动方法来开发特定手术的PJI预测模型。

方法

利用一个大型机构关节置换登记处收集2000年至2019年间至少接受过一次初次和/或翻修髋关节和/或膝关节置换术的41844例患者的58574例手术的数据。登记数据集通过EHR中的额外临床、手术和实验室数据进行扩充,包含100多个潜在预测变量。主要结局是术后第一年内发生的PJI。我们采用传统方法和机器学习方法进行模型开发(套索回归、松弛套索回归、岭回归、随机森林、逐步回归、极端梯度提升、神经网络),并使用10折交叉验证来计算模型在区分度(c统计量)和校准方面的性能指标。

结果

所有模型在预测PJI风险方面的区分能力相似,表现最佳和最差的模型之间的差异可忽略不计,小于0.08。使用Cox模型结构的松弛和完全松弛套索模型优于其他模型,在初次髋关节置换术中一致性为0.787,在翻修髋关节置换术中为0.722,预测变量数量从9个到41个不等。在初次膝关节置换术中,松弛套索模型的一致性为0.681,在翻修膝关节置换术中为0.699,模型中的预测变量数量更多。四个手术组模型中包含的预测变量差异很大。

结论

纳入EHR中的额外数据对PJI风险分层的改善有限。此外,机器学习方法在PJI风险预测方面的改善不大,可能无法证明增加的复杂性是合理的。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验