Graduate Program in Bioinformatics and Biological Design Center, Boston University, Boston, MA, 02215, USA.
Department of Biology, Boston University, Boston, MA, 02215, USA.
Nat Commun. 2019 Jan 9;10(1):103. doi: 10.1038/s41467-018-07946-9.
Metabolic exchange mediates interactions among microbes, helping explain diversity in microbial communities. As these interactions often involve a fitness cost, it is unclear how stable cooperation can emerge. Here we use genome-scale metabolic models to investigate whether the release of "costless" metabolites (i.e. those that cause no fitness cost to the producer), can be a prominent driver of intermicrobial interactions. By performing over 2 million pairwise growth simulations of 24 species in a combinatorial assortment of environments, we identify a large space of metabolites that can be secreted without cost, thus generating ample cross-feeding opportunities. In addition to providing an atlas of putative interactions, we show that anoxic conditions can promote mutualisms by providing more opportunities for exchange of costless metabolites, resulting in an overrepresentation of stable ecological network motifs. These results may help identify interaction patterns in natural communities and inform the design of synthetic microbial consortia.
代谢交换介导微生物之间的相互作用,有助于解释微生物群落的多样性。由于这些相互作用通常涉及到适应度成本,因此尚不清楚稳定的合作如何能够出现。在这里,我们使用基因组规模的代谢模型来研究“无成本”代谢物(即不会对生产者造成适应度成本的代谢物)的释放是否可以成为微生物间相互作用的主要驱动因素。通过对 24 个物种在组合环境中的 200 多万对生长模拟,我们确定了大量可以无成本分泌的代谢物,从而产生了大量的交叉喂养机会。除了提供一个潜在相互作用的图谱外,我们还表明,缺氧条件可以通过提供更多交换无成本代谢物的机会来促进互利共生,从而导致稳定的生态网络基元的过度表达。这些结果可能有助于识别自然群落中的相互作用模式,并为合成微生物联合体的设计提供信息。