Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, UK.
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK.
J Pathol. 2019 Apr;247(5):606-614. doi: 10.1002/path.5232. Epub 2019 Feb 15.
Historically, our understanding of the cytotoxicity of radiation has centred on tumour cell-autonomous mechanisms of cell death. Here, tumour cell death occurs when a threshold number of radiation-induced non-reparable double-stranded DNA breaks is exceeded. However, in recent years, the importance of immune mechanisms of cell death has been increasingly recognised, as well as the impact of radiotherapy on non-malignant cellular components of the tumour microenvironment. Conserved antiviral pathways that detect foreign nucleic acid in the cytosol and drive downstream interferon (IFN) responses via the cyclic guanosine monophosphate-adenosine monophosphate synthase/stimulator of IFN genes (cGAS/STING) pathway are key components of the immune response to radiation-induced DNA damage. In preclinical models, acute induction of a type 1 IFN response is important for both direct and abscopal tumour responses to radiation. Inhibitors of the DNA damage response show promise in augmenting this inflammatory IFN response. However, a substantial proportion of tumours show chronic IFN signalling prior to radiotherapy, which paradoxically drives immunosuppression. This chronic IFN signalling leads to treatment resistance, and heterotypic interactions between stromal fibroblasts and tumour cells contribute to an aggressive tumour phenotype. The effect of radiotherapy on myeloid cell populations, particularly tumour-associated macrophages, has an additional impact on the immune tumour microenvironment. It is not yet clear how the above preclinical findings translate into a human context. Human tumours show greater intratumoural genomic heterogeneity and more variable levels of chromosomal instability than experimental murine models. High-quality translational studies of immunological changes occurring during radiotherapy that incorporate intrinsic tumour biology will enable a better understanding of the immunological consequences of radiation-induced DNA damage in patients. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
从历史上看,我们对辐射细胞毒性的理解主要集中在肿瘤细胞自主的细胞死亡机制上。在这里,当超过辐射诱导的不可修复双链 DNA 断裂的阈值数量时,肿瘤细胞就会死亡。然而,近年来,细胞死亡的免疫机制的重要性日益得到认可,以及放射治疗对肿瘤微环境中非恶性细胞成分的影响。在细胞质中检测外来核酸并通过环鸟苷酸-腺苷酸合酶/干扰素基因刺激物(cGAS/STING)途径驱动下游干扰素(IFN)反应的保守抗病毒途径是对辐射诱导的 DNA 损伤的免疫反应的关键组成部分。在临床前模型中,急性诱导 I 型 IFN 反应对于辐射引起的直接和远隔肿瘤反应都很重要。DNA 损伤反应抑制剂在增强这种炎症性 IFN 反应方面显示出希望。然而,相当一部分肿瘤在放射治疗前表现出慢性 IFN 信号,这反而导致免疫抑制。这种慢性 IFN 信号导致治疗抵抗,基质成纤维细胞和肿瘤细胞之间的异型相互作用导致侵袭性肿瘤表型。放射治疗对髓样细胞群体,特别是肿瘤相关巨噬细胞的影响,对免疫肿瘤微环境有额外的影响。目前尚不清楚上述临床前发现如何转化为人类环境。人类肿瘤表现出比实验性小鼠模型更大的肿瘤内基因组异质性和更可变的染色体不稳定性。高质量的放射治疗过程中免疫变化的转化研究将有助于更好地理解辐射诱导的 DNA 损伤在患者中的免疫学后果。版权所有©2019 英国和爱尔兰病理学会。由 John Wiley & Sons,Ltd 出版。