Martens Craig C
University of California , Irvine , California 92697-2025 , United States.
J Phys Chem A. 2019 Feb 7;123(5):1110-1128. doi: 10.1021/acs.jpca.8b10487. Epub 2019 Jan 28.
We describe a new method for simulating nonadiabatic dynamics using stochastic trajectories. The method, which we call quantum trajectory surface hopping (QTSH), is a variant of the popular fewest-switches surface-hopping (FSSH) approach, but with important differences. We briefly review and significantly extend our recently described consensus surface-hopping (CSH) formalism, which captures quantum effects such as coherence and decoherence via a collective representation of the quantum dynamics at the ensemble level. Using well-controlled further approximations, we derive an independent trajectory limit of CSH that recovers the FSSH stochastic algorithm but rejects the ad hoc momentum rescaling of FSSH in favor of quantum forces that couple classical and quantum degrees of freedom and lead to nonclassical trajectory dynamics. The approach is well-defined in both the diabatic and adiabatic representations. In the adiabatic representation, the classical dynamics are modified by a quantum-state-dependent vector potential, introducing geometric phase effects into the dynamics of multidimensional systems. Unlike FSSH, our method obeys energy conservation without any artificial momentum rescaling, eliminating undesirable features of the former such as forbidden hops and breakdown of the internal consistency of quantum and ensemble-based state probabilities. Corrections emerge naturally in the formalism that allow approximate incorporation of decoherence without the computational expense of the full CSH approach. The method is tested on several model systems. QTSH provides a surface-hopping methodology that has a rigorous foundation and broader applicability than FSSH while retaining the low computational cost of an independent trajectory framework.
我们描述了一种使用随机轨迹模拟非绝热动力学的新方法。我们将这种方法称为量子轨迹表面跳跃(QTSH),它是流行的最少开关表面跳跃(FSSH)方法的一个变体,但有重要区别。我们简要回顾并显著扩展了我们最近描述的共识表面跳跃(CSH)形式主义,该形式主义通过在系综水平上对量子动力学的集体表示来捕捉诸如相干和退相干等量子效应。通过使用精心控制的进一步近似,我们推导出了CSH的独立轨迹极限,它恢复了FSSH随机算法,但摒弃了FSSH的特设动量重标度,转而支持将经典和量子自由度耦合并导致非经典轨迹动力学的量子力。该方法在 diabatic 和 adiabatic 表示中都有明确的定义。在 adiabatic 表示中,经典动力学由量子态依赖的矢量势修改,将几何相位效应引入多维系统的动力学中。与 FSSH 不同,我们的方法在没有任何人为动量重标度的情况下遵守能量守恒,消除了前者的不良特征,如禁戒跳跃和基于量子和系综的态概率内部一致性的破坏。修正自然地出现在形式主义中,允许在不使用完整 CSH 方法的计算成本的情况下近似纳入退相干。该方法在几个模型系统上进行了测试。QTSH 提供了一种表面跳跃方法,它比 FSSH 具有更严格的基础和更广泛的适用性,同时保留了独立轨迹框架的低计算成本。