Mannouch Jonathan R, Richardson Jeremy O
Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland.
J Chem Phys. 2023 Mar 14;158(10):104111. doi: 10.1063/5.0139734.
We present a nonadiabatic classical-trajectory approach that offers the best of both worlds between fewest-switches surface hopping (FSSH) and quasiclassical mapping dynamics. This mapping approach to surface hopping (MASH) propagates the nuclei on the active adiabatic potential-energy surface, such as in FSSH. However, unlike in FSSH, transitions between active surfaces are deterministic and occur when the electronic mapping variables evolve between specified regions of the electronic phase space. This guarantees internal consistency between the active surface and the electronic degrees of freedom throughout the dynamics. MASH is rigorously derivable from exact quantum mechanics as a limit of the quantum-classical Liouville equation (QCLE), leading to a unique prescription for momentum rescaling and frustrated hops. Hence, a quantum-jump procedure can, in principle, be used to systematically converge the accuracy of the results to that of the QCLE. This jump procedure also provides a rigorous framework for deriving approximate decoherence corrections similar to those proposed for FSSH. We apply MASH to simulate the nonadiabatic dynamics in various model systems and show that it consistently produces more accurate results than FSSH at a comparable computational cost.
我们提出了一种非绝热经典轨迹方法,它结合了最少开关表面跳跃(FSSH)和准经典映射动力学两者的优点。这种表面跳跃映射方法(MASH)在活性绝热势能面上传播原子核,类似于FSSH。然而,与FSSH不同的是,活性表面之间的跃迁是确定性的,当电子映射变量在电子相空间的特定区域之间演化时发生。这保证了在整个动力学过程中活性表面和电子自由度之间的内部一致性。MASH可以从精确量子力学严格推导出来,作为量子-经典刘维尔方程(QCLE)的一个极限,从而得到动量重标度和受阻跳跃的唯一规定。因此,原则上可以使用量子跳跃程序将结果的精度系统地收敛到QCLE的精度。这种跳跃程序还为推导类似于为FSSH提出的近似退相干修正提供了一个严格的框架。我们应用MASH来模拟各种模型系统中的非绝热动力学,并表明在相当的计算成本下,它始终能产生比FSSH更准确的结果。