Martens Craig C
Department of Chemistry, University of California Irvine, Irvine, CA 92697-2025, USA.
Faraday Discuss. 2019 Dec 16;221:449-477. doi: 10.1039/c9fd00042a.
In this paper, we analyze the detailed quantum-classical behavior of two alternative approaches to simulating molecular dynamics with electronic transitions: the popular fewest switches surface hopping (FSSH) method, introduced by Tully in 1990 [Tully, J. Chem. Phys., 1990, 93, 1061] and our recently developed quantum trajectory surface hopping (QTSH) method [Martens, J. Phys. Chem. A, 2019, 123, 1110]. Both approaches employ an independent ensemble of trajectories that undergo stochastic transitions between electronic surfaces. The methods differ in their treatment of energy conservation, with FSSH imposing conservation of the classical kinetic plus potential energy by rescaling the classical momentum when a surface hop occurs while QTSH incorporates a quantum force throughout the dynamics which leads naturally to the conservation of the full quantum-classical energy. We investigate the population transfer and energy budget of the surface hopping methods for several simple model systems and compare with exact quantum results. In addition, the detailed dynamics of the trajectory ensembles in phase space are compared with the quantum evolution in the Wigner representation. Conclusions are drawn.
在本文中,我们分析了两种用于模拟带有电子跃迁的分子动力学的替代方法的详细量子 - 经典行为:一种是1990年由塔利引入的广为人知的最少开关表面跳跃(FSSH)方法[Tully, J. Chem. Phys., 1990, 93, 1061],另一种是我们最近开发的量子轨迹表面跳跃(QTSH)方法[Martens, J. Phys. Chem. A, 2019, 123, 1110]。这两种方法都采用独立的轨迹系综,这些轨迹系综在电子表面之间进行随机跃迁。两种方法在能量守恒的处理上有所不同,FSSH通过在发生表面跳跃时重新缩放经典动量来强制经典动能加势能守恒,而QTSH在整个动力学过程中纳入了量子力,这自然导致了全量子 - 经典能量的守恒。我们研究了几种简单模型系统的表面跳跃方法的布居转移和能量收支,并与精确的量子结果进行比较。此外,还将相空间中轨迹系综的详细动力学与维格纳表象中的量子演化进行了比较。得出了结论。