Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil.
Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden.
FEBS J. 2019 Mar;286(6):1214-1229. doi: 10.1111/febs.14745. Epub 2019 Feb 12.
The ammonium-dependent posttranslational regulation of nitrogenase activity in Azospirillum brasilense requires dinitrogenase reductase ADP-ribosyl transferase (DraT) and dinitrogenase reductase ADP-glycohydrolase (DraG). These enzymes are reciprocally regulated by interaction with the PII proteins, GlnB and GlnZ. In this study, purified ADP-ribosylated Fe-protein was used as substrate to study the mechanism involved in the regulation of A. brasilense DraG in vitro. The data show that DraG is partially inhibited by GlnZ and that DraG inhibition is further enhanced by the simultaneous presence of GlnZ and AmtB. These results are the first to demonstrate experimentally that DraG inactivation requires the formation of a ternary DraG-GlnZ-AmtB complex in vitro. Previous structural data have revealed that when the DraG-GlnZ complex associates with AmtB, the flexible T-loops of the trimeric GlnZ bind to AmtB and become rigid; these molecular events stabilize the DraG-GlnZ complex, resulting in DraG inactivation. To determine whether restraining the flexibility of the GlnZ T-loops is a limiting factor in DraG inhibition, we used a GlnZ variant that carries a partial deletion of the T-loop (GlnZΔ42-54). However, although the GlnZΔ42-54 variant was more effective in inhibiting DraG in vitro, it bound to DraG with a slightly lower affinity than does wild-type GlnZ and was not competent to completely inhibit DraG activity either in vitro or in vivo. We, therefore, conclude that the formation of a ternary complex between DraG-GlnZ-AmtB is necessary for the inactivation of DraG.
巴西固氮螺菌中依赖氨的氮酶活性的翻译后调节需要二氮酶还原酶 ADP-核糖基转移酶(DraT)和二氮酶还原酶 ADP-糖基水解酶(DraG)。这些酶通过与 PII 蛋白 GlnB 和 GlnZ 的相互作用而被相互调节。在这项研究中,使用纯化的 ADP-核糖化 Fe 蛋白作为底物来研究体外调节 A. brasilense DraG 的机制。数据表明,DraG 被 GlnZ 部分抑制,并且 DraG 抑制作用通过 GlnZ 和 AmtB 的同时存在而进一步增强。这些结果首次实验证明了 DraG 失活需要在体外形成 DraG-GlnZ-AmtB 三元复合物。先前的结构数据表明,当 DraG-GlnZ 复合物与 AmtB 结合时,三聚体 GlnZ 的柔性 T 环与 AmtB 结合并变得刚性;这些分子事件稳定了 DraG-GlnZ 复合物,导致 DraG 失活。为了确定限制 GlnZ T 环的灵活性是否是 DraG 抑制的限制因素,我们使用了携带 T 环部分缺失(GlnZΔ42-54)的 GlnZ 变体。然而,尽管 GlnZΔ42-54 变体在体外更有效地抑制 DraG,但它与 DraG 的结合亲和力略低于野生型 GlnZ,并且无论是在体外还是在体内都不能完全抑制 DraG 活性。因此,我们得出结论,DraG-GlnZ-AmtB 三元复合物的形成是 DraG 失活所必需的。